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Course Overview

This course studies Computer Vision (CV) algorithms together with their visual representations learnt through Deep Learning (DL)
technigues. The studied algorithms are intended to solve traditional CV tasks, including classification, object detection and tracking,
retrieval, face detection, image/video generation, emotion and action recognition and are illustrated through a panel of applications, such as
video retrieval from the web, visual-surveillance, autonomous driving, merchandising, assisted living and robotics. The course discusses
state-of-the-art methods from low-level description to high-level representation, and their dependence on the related CV tasks. The focus of
the course is on recent, state of the art methods and large scale applications. Cutting-edge topics will be studied, such as Convolutional
Neural Networks, Recurrent Neural Networks and Generative Adversarial Networks. You will learn also to build projects in
PyTorch/TensorFlow.

Announcements

January 14, 2025: Welcome to Deep Learning for Computer Vision !

Course Information

Course Instructors

Francois Tomasz Snehashis Seongro Mahmoud
Bremond Stanczyk Majhi Yoon Ali

https://www-sop.inria.fr/members/Francois.Bremond/MSclass/deepl earningWinterSchool25/UCA_master/index.html
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Lecture Date Topic Instructor Course Materials TPITD
Week 1
1 Tue 14/01/2025 Intrqductlon. Image Classification. PyTorch Francois, s!|des F. (pdf) TP1
Basics. Tomasz video F (mp4)
Week 2
2 |Tue 21/01/2025 [Object Detection Tomasz  [o'0es - (pdD TP2
video T. (mp4)
Week 3
lides T. (pd
3 [Tue 28/01/2025 [Object Tracking [T i TP3
video Tomasz (mp4)
Week 4
li hashi
4  [Tue 04/02/2025 |Video and Action Classification svehastis [ s ) e Tpg
video Snehashis (mp4)
Week 5
5 [Tue 04/03/2025 |Action Detection and Anticipation Snehashis [10es Snehashis (pdf)
video (mp4)
Week 6
6 Tue 11/03/2025 ([Image and Video Generation Seongro  [slides Seongro (pdf)
Week 7
7 Tue 18/03/2025 [Foundation Models Mahmoud
Week 8
8 Tue 25/03/2025 |Final Project Presentations
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Problem

1. Question: How can you detect an object, such as a "car," in an
image using object detection techniques?

Key Steps to build Model [A-Z]:

1. Collect Data — Gather images containing objects of interest.

2. Label the Data — Annotate images with bounding boxes or
masks.

3. Train the Model — Use deep learning techniques (e.qg.,
CNNs) to learn object features.

4. Test the Model — Validate your trained model.




Problem

1. Question: How can you detect an object, such as a "car," in an
image using object detection techniques?

Get Data I Improve

Clean, Prepare Test Data
& Manipulate Data

1. High costs, Time consuming, Annotation errors and scalability issues




Problem: Supervised Learning is Expensive! ?
-4

Assume you want to label 1M images. How much will it cost?



Problem: Supervised Learning is Expensive!

Assume you want to label 1M images. How much will it cost?

(1,000,000 images) (Small to medium sized dataset)
X (10 seconds/image) (Fast annotation)

X (1/3600 hours/second)

X ($15 / hour) (Low wage paid to

annotator)



Problem: Supervised Learning is Expensive! ?,

Assume you want to label 1M images. How much will it cost?

(1,000,000 images) (Small to medium sized dataset)
X (10 seconds/image) (Fast annotation)

X (1/3600 hours/second)

X ($15 / hour) (Low wage paid to

= $41,667 annotator)

(Other assumptions: one annotator per image, no benefits / payroll tax / crowdsourcing fee
for annotators; not accounting for time to set up tasks for annotators, etc. Real costs could
easily be 3x this or more)



Problem: Supervised Learning is Expensive! ?,

[
Assume you want to label 1B images. How much will it °a
cost?
(1,000,000,000 images) (Large dataset)
X (10 seconds/image) (Fast
X (1/3600 hours/second) annotation)
X ($15 / hour) (Low wage paid to
= $41,666,667 annotator)

(Other assumptions: one annotator per image, no benefits / payroll tax / crowdsourcing fee
for annotators; not accounting for time to set up tasks for annotators, etc. Real costs could
easily be 3x this or more)



Problem

2. Question: How would you detect other objects, such as "person™ ?

What steps would you follow?
Can the same model be used for both objects?
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Problem: Supervised Learning is Not How We Learn
Q)

Babies don’t get supervision
for everything they see!

Baby image is CCO public domain




Solution: Self-Supervised Learning

Lets build methods that learn from “raw” data —:
1. No annotations required.
2. Can Generalize well.

Unsupervised Learning: Model isn’t told what to predict. Older
terminology, not used as much today.

Self-Supervised Learning: Model is trained to predict some
naturally- occurring signal in the raw data rather than human
annotations.



Table of Contents

1. Problem

2. Introduction
 Foundation models in vision tasks

3. Self-supervised Learning

e Discriminative Visual Foundation Models

@

® ’ ® m Contrastive learning [SimCLR, MoCo, ...]
® . m  Self Distillation[BYOL, DINO, ...]

P o-

> 0.‘ e Generative Visual foundation models

o ©® B Mask Auto-Encoder [MAE]

4. Multi-Modal Self-supervised Learning [CLIP]
® |mage-text Contrastive Learning

5. Segment Anything [SAM]

15



Introduction

* Foundation Models for Vision
Is a pre-trained deep neural network that forms the backbone for various downstream tasks.

Fixing a foundation model (e.g., trained via self-supervised learning) and only adapting a simple
task-specific model is sufficient for many problems
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Image-only (Non-)
Contrastive Learning
DIM CPC CMC SimCLR
MoCo EsViT BYOL
Barlow twins SimSiam
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Image Pre-training

CLIP ALIGN Florence
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X-Decoder

Image Backbones
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Figure 2.3: An overview of the topics covered in this chapter and representative works in each topic.
We start from supervised learning and CLIP, and then move on to image-only self-supervised learn-
ing, including contrastive learning, non-contrastive learning, and masked image modeling. Lastly,

we discuss pre-training methods that empower multimodal fusion, region-level and pixel-level im-
age understanding.
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H Text-based Editing -
{ Text Prompts Following }——
-( Concept Customization }—

- From Closed-set to Open-set Models | —

H From Task-Specific o Generic Models |—

- From Static o Promplable Models |

{ Image-to-Text Generation )—-

G‘":s’:.l;f;“n'l‘:’“ Large Multi-
modal Models:
Training with

LLM §5

Multimodal
Agents:

Chaining Tools
with LLM 86

-{ Instruction Tuning in LLM }—

| Instruction Tuning in LMM

{ Emerging Topics )
o Multimode] Agent —
Y Advanced Topics )

BiT (Kolesnikov et al., 2020),
VAT (Dosovitskiy et al.. 2021)

CLIP (Radford et al., 2021);
ALIGN (Jia et al., 2021)

MoCo (He et al., 2020); DINO (Caron
et al., 2021): MAE (He et al., 2022a)

SLIP (Mu et al., 2021);
UniCL (Yang et al., 2022b)

UNITER (Chen et al., 2020d);
CoCa (Yu et al., 2022a)

GLIP (Li et al., 2022¢);
SAM (Kinllov et al., 2023)

Stable Diffusion (Rom-
bach et al., 2021)

ControlNet (Zhang
and Agrawala, 2023)

InstructPix2Pix (Brooks et al., 2023)
DDPO (Black et al., 2023)
DreamBooth (Ruiz et al., 2023)

GLIP (L et al., 20221);
OpenSeg (Ghiasi et al., 2022b)
OpenSeeD (Zhang et al,, 2023¢)

Unified-10 (Lu et al., 2022a);
X-Decoder (Zou et al., 2023a)

SAM (Kirillov et al., 2023);
SEEM (Zou et al., 2023b);
SegGPT (Wang et al., 2023j)

Flamingo (Alayrac et al., 2022)

ChatGPT (OpenAl, 2022);
Vicuna (Vicuna, 2023)

Multimodal GPT-4 (OpenAl 2023a);
LLaVA (Liu et al, 2023c);
MiniGPT4 (Zhu et al., 2023a)

VISPROG (Gupta and
Kembhavi, 2022a);
Visual ChatGPT (Wu et al., 2023a);
MM-REACT (Yang® et al.. 2023)
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Fig. 1. Overview of the evolution of foundational models in computer vision. (left) We show the progression of models in computer vision. (right) We
show the evolution of these models with major milestones reported in the literature shown with dotted lines.
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Label '/\ /—\ Target on Masked Patches

Image Image Image Image Image
Encoder Encoder Encoder Encoder Encoder Encoder
T T T Augt ‘ | Aug2 T Masking
Image Image Text Image Image
(a) Supervised Learning (b) CLIP (c) Image-only (non-)contrastive learning  (d) Masked image modeling

Figure 2.2: A high-level overview of different approaches to learn general image representations, in-
cluding supervised learning (Krizhevsky et al., 2012), contrastive language-image pre-training (Rad-
ford et al., 2021; Jia et al., 2021), and image-only self-supervised learning, including contrastive
learning (Chen et al., 2020a; He et al., 2020), non-contrastive learning (Grill et al., 2020; Chen and
He, 2021), and masked image modeling (Bao et al., 2022; He et al., 2022a).
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* Foundation Models for Vision

 Fixing a foundation model (e.g., trained via self-supervised learning) and only adapting a simple

task-specific model is sufficient for many problems
* This lecture will cover following foundation models for vision

aussie pup

» Discriminative and generative models (e.g., self-supervised models, CLIP)
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* Foundation Models for Vision
 Fixing a foundation model (e.g., trained via self-supervised learning) and only adapting a simple
task-specific model is sufficient for many problems
* This lecture will cover following foundation models for vision

* Discriminative and generative models (e.g., self-supervised models, CLIP)
* Vision-specific models (e.g., Segment Anything (SAM),

Segment Anything [Meta Al, 22]

23



* Foundation Models for Vision
* Fixing a foundation model (e.g., trained via self-supervised learning) and only adapting a simple
task-specific model is sufficient for many problems
* This lecture will cover following foundation models for vision

* Discriminative and generative models (e.g., self-supervised models, CLIP)
* Vision-specific models (e.g., Segment Anything (SAM)

* In specific, this lecture will answer (or at least hint) to the following questions:
* How to train foundation models?
* What are the zero-shot capabilities of foundation models?
* How to exploit foundation models on specific tasks?

24



Discriminative Visual Foundation Models: Overview

We are interested in visual representations that extract high-level semantics which can be applied to
various downstream tasks such as

» Supervised learning (e.g., classification, detection)

* Unsupervised learning (e.g., clustering, metric learning)

* Modular component for multimodal understanding (e.g., image-text retrieval, visual question answering)

Scaling model and data size is key recipe in training foundation models:
* The loss function must be designed to be scalable and stable
* The data should be curated to remove bias or noisy label

* Computation efficiency to lower the training cost

25
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Self-supervised learning: Overview

Introduce self-supervised learning (SSL) methods:
e Discriminative Visual Foundation Models

o Invariance based methods such as contrastive learning (CLIP, DINO)

* Generative Visual Foundation Models

o Masked image modeling (MIM)



Recall: Supervised vs Unsupervised Learning

Supervised Learning Unsupervised

Learning

Data: (x, y) Data: x

X is data, y is label Just data, no labels!

Goal: Learn a function to map x -> Goal: Learn some underlying

y hidden structure of the data
Examples: Classification, regression, Examples: Clustering,

object detection, semantic dimensionality reduction, feature

segmentation, image captioning, etc. learning, density estimation, etc.



Self-Supervised Learning: Pretext then Transfer

Step 1: Pretrain
a network on a
pretext task that
doesn’t require
supervision

Input Image: x

\

Encoder:

b
—

/
Decoder: Loss:

IR Ly, y
\

Features: ¢(x)  Prediction: yL



Self-Supervised Learning: Pretext then Transfer
I

/

Step 1: Pretrain

a network on a Encoder: Decoder: Loss:
pretext task that i) A Ly, y
doesn’t require ,, Naey | T

supervision Input Image: x Features: ¢ (x) Prediction: yL
Step 2: \ Downstream tasks:
Transfer ® | Encoder: Image classification,
encoder to i) object detection,
downstream T semantic

tasks via linear Input Image: x Features: @ (x) segmentation

classifiers, KNN,
finetuning



Self-Supervised Learning: Pretext then Transfer

Step 1: Pretrain
a network on a
pretext task that
doesn’t require
supervision

Step 2:
Transfer
encoder to
downstream
tasks via linear
classifiers, KNN,
finetuning

Input Image: x

Input Image: x

/

Encoder:

-

Decoder:

\@

Features: ¢ (x)

/

Encoder:

\@

IR

\

Loss:

L,y

Prediction: y[

Goal: Pretrain +
Transfer does better
than supervised
pretraining, and better

Features: ¢ (x) than directly training on

downstream



Self-Supervised Learning: Pretext Tasks

Discriminative: Generative: Predict Multimodal: Use some

Predict something part of the input signal  additional signal in

about the input signal addition to RGB images
* Autoencoders

* Context prediction (sparse, denoising, * Video

 Rotation masked) e 3D

e Clustering * Autoregressive e Sound

* Contrastive * GANs * Language

e (Colorization

* |npainting



[Chen et al, ICML 2020] [He et al, CVPR 2020] [Grill et al, NeurIlPS 2020] [Caron et al, NeurlPS 2020]

Self-Supervised Paradigms in Vision

e Contrastive / Siamese

A=

" =

X

» Compare data points in the latent representation
space

« Computer vision: SImCLR, MoCo, BYOL, DINO,
..., with augmentations

* Reconstructive / Auto-Encoding

S
]

» Reconstruct corrupted data points

» Grounded in the input space
» Paradigm of BERT & GPT in NLP

» Computer Vision: MAE
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[Zhou et al, ICLR 2022] [Li et al, CVPR 2023]

Self-Supervised Paradigms in Vision

« “Contrastive + Reconstructive” is also possible

X ~ > X
X < > reconstructiv
" VrARSS => X /e

" /

contrastive

» Multi-tasking makes representations more versatile: iBOT, MAGE

» But the pipeline is less clean to understand scientifically
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Contrastive Learning

Assume we don’t have labels for images, but we know whether some pairs
of images are or dissimilar

Hadsell et al, “Dimensionality Reduction by Learning and Invariant Mapping”, CVPR 2006 White kitten image is free for commercial use under the Pixabay license




Contrastive Learning

Assume we don’t have labels for images, but we know whether some

pairs of images are similar or dissimilar

Similar images should have similar features

CNN ]

CNN ]

Hadsell et al, “Dimensionality Reduction by Learning and Invariant Mapping”, CVPR 2006

White kitten image is free for commercial use under the Pixabay license




Contrastive Learning

Assume we don’t have labels for images, but we know whether
some pairs of images are similar or dissimilar

Similar images should have similar features Dissimilar images should have dissimilar features

CNN ] CNN ]

CNN ] CNN ]

Hadsell et al, “Dimensionality Reduction by Learning and Invariant Mapping”, CVPR 2006 White kitten image is free for commercial use under the Pixabay license




Contrastive Learning

Assume we don’t have labels for images, but we know whether some pairs
of images are similar or dissimilar

Letd = b (X1) — op( X2)||2 be the Euclidean distance between features for two images

Similar images should have similar features Dissimilar images should have dissimilar features

CNN ] CNN ]

CNN ] CNN ]

Hadsell et al, “Dimensionality Reduction by Learning and Invariant Mapping”, CVPR 2006

White kitten image is free for commercial use under the Pixabay license



Contrastive Learning

Assume we don’t have labels for images, but we know whether some pairs
of images are similar or dissimilar

Letd = ||cb(x1) — op( XZ)II2 be the Euclidean distance between features for two images

Similar images should have similar features Dissimilar images should have dissimilar features

CNN 1 CNN 1
( ) L. X, X,
Pull features together
CNN — CNN —

Hadsell et al, “Dimensionality Reduction by Learning and Invariant Mapping”, CVPR 2006

White kitten image is free for commercial use under the Pixabay license



Contrastive Learning

Assume we don’t have labels for images, but we know whether some pairs
of images are similar or dissimilar

Letd = b ( x) — X x,)ll, be the Euclidean distance between features for two images

Similar images should have similar features Dissimilar images should have dissimilar features

CNN [ ] CNN [ ]
L (x,, x
( J Lo X, x, = = max©, m = d)*

Pull features together

E—

Hadsell et al, “Dimensionality Reduction by Learning and Invariant Mapping”, CVPR 2006

Push features apart

(up to margin m)
CNN 1

White kitten image is free for commercial use under the Pixabay license



SSL via Invariance

Core idea of invariance-based learning:
* Invariance: Representations of related samples should be similar

* Contrast (optional): Representations of unrelated samples should be dissimilar

Positive pair

Negative pair

42



SSL via Invariance

Core idea of invariance-based learning:
* Invariance: Representations of related samples should be similar

* Contrast (optional): Representations of unrelated samples should be dissimilar

Positive pair

Negative pair

* Q) How to construct positive/negative pairs in the unsupervised setting?

* A) Positive samples are constructed from Problem: Where to get

* Similar samples (e.g., in the same cluster) positive and negative
e Same instance of different data augmentation .
ot PAIrs?

» Additional structures (e.g., multi-view images, video) (negative samples =

positive samples) Algorithmic Intelligence Lab 43



Contrastive Learning Loss: Inter-Sample Classification

Given both similar (“positive”) and dissimilar (“negative”) candidates, to identify
which ones are similar to the anchor data point is a classification task.

There are ways to construct a set of data point candidates:
1. The original input and its distorted version
2. Data that captures the same target from different views



3.1.1 Data Augmentation



Techniques: Data Augmentation

Data augmentation setup is critical for learning good embedding.

It introduces the non-essential variations into examples without modifying semantic
meanings and thus encourages the model to learn the essential part within the
representation.

e Image augmentation
e T[ext augmentation



Techniques: Image Augmentation

Basic Image Augmentation
Random crop

color distortion
Gaussian blur

color jittering

random flip/rotation
etc.

o O O O O O

Augmentation Strategies

Image Mixture



Techniques: Image Augmentation

e Basic Image Augmentation

® Augmentation Strategies

o  AutoAugment (Cubuk, et al. 2018): inspired by NAS
o  RandAugment (Cubuk et al. 2019): reduces NAS search space in AutoAugment.
o PBA (Population based augmentation; Ho et al. 2019): evolutionary algorithm

o UDA (Unsupervised Data Augmentation; Xie et al. 2019): minimize the KL divergence between the predicted distribution
over an unlabelled example and its unlabelled augmented version.

® Image Mixture



Techniques: Image Augmentation

Basic Image Augmentation
Augmentation Strategies

Image Mixture

o Mixup (Zhang et al 2018): weighted pixel-wise combination of two images.

o Cutmix (Yun et al 2019): mix in a local region of one image into the other.
o MoCHi ("Mixing of Contrastive Hard Negatives”; Kalantidis et al 2020): mixture

of hard negative samples.



Hard Negative Mining

Hard negative samples are different to learn. They should have different labels from
the anchor sample, but the embedding features may be very close.

Hard negative mining is important for contrastive learning.

Challenging negative samples encourages the model to learn better
representations that can distinguish hard negatives from true positives.

(a) Negative (b) Hard Negative



Hard Negative Mining
Explicit hard negative mining

e MoCHi (Kalantidis et al. 2020): mine hard negative by sorting them
according to similarity to the query in descending order.

e [Extract task-specific hard negative samples from labelled datasets.
o e.g. contradiction” sentence pairs from NLI| datasets. (Most
sentence embedding papers)

e Keyword based retrieval
o e.g. BM25 search results (Karpukhin et al. 2020)
e Upweight the negative sample probability to be proportional to its similarity to
the anchor sample (Robinson et al. 2021)



Hard Negative Mining

Implicit hard negative mining

e In-batch negative samples
e Memory bank (Wu et al. 2018, He et al. 2019) — Increase batch size
e Large batch size via various training parallelism



Contrastive Representation Learning

attract




Contrastive Representation Learning
+ +
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€T  reference

x T positive :I/‘

€L  negative
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A formulation of contrastive learning

What we want:

score(f(x), f(x™)) >> score(f(x), f(x7))

x: reference sample; x* positive sample; x" negative sample

Given a chosen score function, we aim to learn an encoder

function f that yields high score for positive pairs (x, x*) and
low scores for negative pairs (x, x°).



A formulation of contrastive learning
Loss function given 1 positive sample and N - 1 negative samples:

L=-FE
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A formulation of contrastive learning
Loss function given 1 positive sample and N - 1 negative samples:
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A formulation of contrastive learning
Loss function given 1 positive sample and N - 1 negative samples:

L=—

L
P

This seems familiar ...

log

exp(s(f(z), f(z™))

exp(s(f(2), f(z+)) + S0 exp(s(f (@), £ (z}))

score for the positive pair score for the
N-1 negative
pairs

Cross entropy loss for a N-way softmax classifier!
|.e., learn to find the positive sample from the N

samples




A formulation of contrastive learning
Loss function given 1 positive sample and N - 1 negative samples:

exp(s(f(z), f(z™))
exp(s(f(z), f(z 1)) + X, exp(s(f(z), f(z;))

Commonly known as the InfoNCE loss (van den Oord et al.. 2018) A
lower bound on the mutual information between f(x) and f(x")

MI[f(z), f(x™)] —log(N) = —L

The larger the negative sample size (N), the tighter the bound

L:—*JX lOg

Detailed derivation: Poole et al., 2019




3.1.2 Losses



Contrastive Learning Loss: Inter-Sample Classification

Common loss functions:

e Contrastive loss (Chopra et al. 2005)

e Triplet loss (Schroff et al. 2015; FaceNet)

e Lifted structured loss (Song et al. 2015)

e Multi-class n-pair loss (Sohn 2016)

e Noise contrastive estimation ("NCE"; Gutmann & Hyvarinen 2010)

e InfoNCE (van den Oord, et al. 2018)
e Soft-nearest neighbors loss (Salakhutdinov & Hinton 2007, Frosst et al. 2019)



Contrastive Learning Loss: Inter-Sample Classification

Contrastive loss (Chopra et al. 2005): Works with labelled dataset.

Encodes data into an embedding vector:
- Examples from the same class have similar embeddings.
- Samples from different classes have different ones.

(xi,y:)  (X5,95)

Given two labeled data pairs and:

Leont (X, X, 0) =1y = yj]

Ifo(x:) — fox)II5

minimize

+ 1[y; # y;j]1 max(0, € —

Wfo(x:) — fo(X;)ll2

N

maximize



Contrastive Learning Loss: Inter-Sample Classification

Triplet loss (Schroff et al. 2015): learns to minimize the distance between the
anchor x and positive x+ and maximize the distance between the anchor x and
negative x- at the same time.

Given a triplet input(x, x*, x7)

Loipe 6 X, x7) = Y max (0, [f®) = F&xHIZ = IF®) = FGOI2 + )

xeX

Negative m
Anchor LEARNING
Negative
O

" Anchor Positi (Schroff et al.
Positive ositve 2015)



Contrastive Learning Loss: Inter-Sample Classification

N-pair loss (Sohn 2016) generalizes triplet loss to include comparison with
multiple negative samples.

Given one positive and N-1 negative sample: {x,x*,x,... ., xy_;}

N-1
Lrapair %, X, {x7 1101 = log (1+ ) exp(f®)f(x;) — f®) f(xH))
=1

exp(f(x)Tf(x™))
exp(f(X)TF(xH) + X" exp(f(x)Tf(x;))

= —log



Contrastive Learning Loss: Inter-Sample Classification

Lifted structured loss (Song et al. 2015): utilizes all the pairwise edges within
one training batch for better computational efficiency.

E(ij)

(4,j) € P
P

A set of negative

pairs

set of positive pairs

e = Dyt log ( Z exp(e — Dy) + Z exp(e — Dﬂ))
(i,k)EN

where Dy = |If(x;) — f(x)ll2

G,DeEN

" /"/’_L_—m -\'\’\
> il .G
a"/--/, \
,;‘_
& %

2\
[, K> /\"f?ﬁo

X1 X9 X3 X4 X5 X6

(Song et al.
2015)



Contrastive Learning Loss: Inter-Sample Classification

Noise Contrastive Estimation (NCE) (Gutmann & Hyvarinen 2010) runs
logistic regression to tell apart the target data from noise.

Given target sample distribution p and noise distribution q,

1 N i just cross entropy
Lnce =~ D, [log o(Zo(x:) + log(l — o(£p(%:)] -~
j=1

where logit Zg(u) = log Pqe((u“)) = log pg(u) — log g(u)
1 _ Py

sigmoid o(?) = 1 + exp(—=?) B Po + ¢



Contrastive Learning Loss: Inter-Sample Classification

InfoNCE (van den Oord, et al. 2018):
uses categorical cross-entropy loss to identify the positive sample amongst a set of unrelated noise samples.

Given a context vector c, the positive sample should be drawn from the conditional distribution p(x|c),
while N—1 negative samples are drawn from the proposal distribution p(x), independent from the context c.

The probability of detecting the positive sample correctly is:

where the density function is
f (Xpos; €) f(x,0) p(x[c)

Z;'V:1 f(xja C) p(x)

p(C = pos|X,c) =



Contrastive Learning Loss: Inter-Sample Classification

Soft-Nearest Neighbors Loss (Frosst et al. 2019) extends the loss function to
iInclude multiple positive samples given known labels.

Given a batch of (x5, ¥},

samples
temperature

term

z lséj Yi=yjy=1,....B eXp(—f(Xi, X])/T(
snn R — 0og
,;ekk 1,...B exp(—f (X;, Xx)/7)



3.1.3 Framework



SSL via Invariance

* Instantiations of invariance-based approach
* Many classes of self-supervised learning can be viewed as invariance-based

* Contrastive learning

e Attract similar samples and dispel dissimilar samples
* E.g., MoCo, SimCLR, CLIP

* Clustering & pseudo-labeling
e Cluster data into K groups, and assume they are pseudo-labels
* Distill pseudo-labels to the self-supervised classifier (strengthen the similarity)
e E.g., DeepCluster, SWAV, DINO

* Consistency regularization
e Attract similar samples
e E.g., MixMatch, UDA, BYOL



SimCLR: A Simple Framework for Contrastive Learning

* Asimple framework for contrastive learning without requiring specialized architectures or a memory bank

Zq
Cosine similarity as the score function: g(*) I
T
h.
S(u, 'U) = —— Az
[l l[[2]
F)
Use a projection network g(-) to project features to a space where

contrastive learning is applied

Generate positive samples through data augmentation:

° random cropping, random color distortion, and random blur.

Maximize agreement

+— Representation — h;

Source: Chen et al., 2020




SIMCLR: generating positive samples from data augmentation

(f) Rotate {90°, 180°,270°} (g) Cutout (h) Gaussian noise (1) Gaussian blur (j) Sobel filtering
Source: Chen et al., 2020




SimCLR: mini-batch training

list of positive pairs

—
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SimCLR: mini-batch training

list of positive pairs

2N x D
—  encoder Z & IR&
\‘ ?

R

encoder

S

I

Each 2k and 2k + 1
element is a positive

pair

i, =

T. .
Z; %j

[l2i]] []2]]
“Affinity matrix”

“m

“m

2N
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.= classification label for each row



Algorithm 1 SimCLR’s main learning algorithm.
Si m C L R input: batch size N, constant 7, structure of f, g, 7.

for sampled minibatch {z}_, do
forallk e {1,....N}do

draw two augmentation functions t~ 7, t' ~T
/ # the first augmentation

Generate a positive pair _— | Z2k-1 = {x)

_ hok—1 = f(®2k—1) # representation
by Samp“ng data Zok—1 = g(hog—1) # projection
augmentation functions # the second augmentation

I Top = t'(xk)
hor = f(@ar) # representation
zor = g(hak) # projection
end for
foralli € {1,...,2N}and j € {1,...,2N} do
sii = z; zi/(|zilll|z;]) # pairwise similarity
end for

.. : N exp(si,;/T)
define E(z,]) as Z(Z,J) - ]'Og 2221 Lk exp(si,k/T)

L= [6(2k—1,2k) + £(2k, 2k—1)]
update networks f and g to minimize £

end for

return encoder network f(-), and throw away g(-)

Source: Chen et al., 2020




Algorithm 1 SimCLR’s main learning algorithm.
Si m C L R input: batch size N, constant 7, structure of f, g, 7.

for sampled minibatch {z}_, do
forallk e {1,.... N} do

draw two augmentation functions t~ 7, t' ~T
/ # the first augmentation

Generate a positive pair __— | 2k-1 = HZx)

_ hok—1 = f(®2k—1) # representation
by Samp“ng data Zok—1 = g(hog—1) # projection
augmentation functions # the second augmentation
I Top = t'(xk)
hor = f(@ar) # representation
zor = g(hok) # projection
end for
foralli € {1,...,2N}and j € {1,...,2N} do
sii = z; zi/(|zilll|z) # pairwise similarity InfoNCE loss:
end for ———T Use all non-positive
define £(i, j) as (i, j) = —log sov— ““ 05 = samples in the
L= 5% Y, [((ZF—T1,2F) + 22k, 2k—T1)] batch as x
update networks f and g to minimize £
end for

return encoder network f(-), and throw away g(-)

Source: Chen et al., 2020




Algorithm 1 SimCLR’s main learning algorithm.
Si m C L R input: batch size N, constant 7, structure of f, g, 7.

for sampled minibatch {z}_, do
forallk e {1,.... N} do

draw two augmentation functions t~ 7, t' ~T
/ # the first augmentation

Generate a positive pair __— | 2k-1 = HZx)

_ hok—1 = f(®2k—1) # representation
by sampling data Zok—1 = g(hog—1) # projection
augmentation functions # the second augmentation
T | &g = t'(xg)
hor = f(Tar) # representation
zor = g(hok) # projection
end for
foralli € {1,...,2N}and j € {1,...,2N} do
sii = z; zi/(|zilll|z) # pairwise similarity InfoNCE loss:
lterate through and eudlor o explagile) o Use all non-positive
define (i, ) 88 (2, 5)=—lo8 sav—y =S T samples in the
use each of the 2N g sl i e ]
L= 5>, [((2k—1,2k) + £(2k, 2k—1)) batch as x

sample as reference, update networks f and g to minimize £
compute average loss end for

return encoder network f(-), and throw away g(-)

Source: Chen et al., 2020




Contrastive Learning with Data Augmentation

Batch of
N images

Hadsell et al, “Dimensionality Reduction by Learning and Invariant Mapping”, CVPR 2006 Hjelm et al, “Learning deep representations by mutual information estimation and maximization”, ICLR 2019 Tian et al, “Contrastive Multiview Coding”, ECCV 2020
Bachman et al, “Learning Representations by Maximizing Mutual Information Across Views”, NeurlPS 2019

Wu et al, “Unsupervised Feature Learning by Non-Parametric Instance-Level Discrimination”, CVPR 2018 e = : ) T N
Henaff et al, “Data-Efficient Image Recognition with Contrastive Predictive Coding”, ICML 2020

Van den Oord et al, “Representation Learning with Contrastive Predictive Coding”, NeurIPS 2018

He et al, “Momentum Contrast for Unsupervised Visual Representation Learning”, CVPR 2020
Chen et al, “A Simple Framework for Contrastive Learning of Visual Representations”, ICML 2020



Contrastive Learning with Data Augmentation

Batch of Two augmentations
N images  for each image
T

Hadsell et al, “Dimensionality Reduction by Learning and Invariant Mapping”, CVPR 2006 Hjelm et al, “Learning deep representations by mutual information estimation and maximization”, ICLR 2019 Tian et al, “Contrastive Multiview Coding”, ECCV 2020
Wau et al, “Unsupervised Feature Learning by Non-Parametric Instance-Level Discrimination”, CVPR 2018 Bachman et al, “Learning Representations by Maximizing Mutual Information Across Views”, NeurlPS 2019 He et al, “Momentum Contrast for Unsupervised Visual Representation Learning”, CVPR 2020
Van den Oord et al, “Representation Learning with Contrastive Predictive Coding”, NeurIPS 2018 Henaff et al, “Data-Efficient Image Recognition with Contrastive Predictive Coding”, ICML 2020 Chen et al, “A Simple Framework for Contrastive Learning of Visual Representations”, ICML 2020



Contrastive Learning with Data Augmentation

Batch of Two augmentations  Extract
N images  for each image features

(WAVAWAWAWAY,

Hadsell et al, “Dimensionality Reduction by Learning and Invariant Mapping”, CVPR 2006 Hjelm et al, “Learning deep representations by mutual information estimation and maximization”, ICLR 2019 Tian et al, “Contrastive Multiview Coding”, ECCV 2020
Wau et al, “Unsupervised Feature Learning by Non-Parametric Instance-Level Discrimination”, CVPR 2018 Bachman et al, “Learning Representations by Maximizing Mutual Information Across Views”, NeurlPS 2019 He et al, “Momentum Contrast for Unsupervised Visual Representation Learning”, CVPR 2020
Van den Oord et al, “Representation Learning with Contrastive Predictive Coding”, NeurIPS 2018 Henaff et al, “Data-Efficient Image Recognition with Contrastive Predictive Coding”, ICML 2020 Chen et al, “A Simple Framework for Contrastive Learning of Visual Representations”, ICML 2020



Contrastive Learni ng with Data Augmentation
Batch of Two augmentations  Extract | 5 R\ Each image tries to predict which
N images  for each image features | = g 4 \ e oftheother2N-1i |.m.age.s came

- - - - - o Orlgmal -

(WAVAWAWAWAY

Hadsell et al, “Dimensionality Reduction by Learning and Invariant Mapping”, CVPR 2006 Hjelm et al, “Learning deep representations by mutual information estimation and maximization”, ICLR 2019 Tian et al, “Contrastive Multiview Coding”, ECCV 2020
Wau et al, “Unsupervised Feature Learning by Non-Parametric Instance-Level Discrimination”, CVPR 2018 Bachman et al, “Learning Representations by Maximizing Mutual Information Across Views”, NeurlPS 2019 He et al, “Momentum Contrast for Unsupervised Visual Representation Learning”, CVPR 2020
Van den Oord et al, “Representation Learning with Contrastive Predictive Coding”, NeurIPS 2018 Henaff et al, “Data-Efficient Image Recognition with Contrastive Predictive Coding”, ICML 2020 Chen et al, “A Simple Framework for Contrastive Learning of Visual Representations”, ICML 2020



Contrastive Learning with Data Augmentation

Each image tries to predict which
@« of the other 2N-1 images came
from the same original image

Batch of Two augmentations  Extract

N images  for each image features

Similarity between x; and x;:
S 5 1= ¢(xi)T¢(xj)
g Gl g Gl
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Hadsell et al, “Dimensionality Reduction by Learning and Invariant Mapping”, CVPR 2006 Hjelm et al, “Learning deep representations by mutual information estimation and maximization”, ICLR 2019 Tian et al, “Contrastive Multiview Coding”, ECCV 2020
Wau et al, “Unsupervised Feature Learning by Non-Parametric Instance-Level Discrimination”, CVPR 2018 Bachman et al, “Learning Representations by Maximizing Mutual Information Across Views”, NeurlPS 2019 He et al, “Momentum Contrast for Unsupervised Visual Representation Learning”, CVPR 2020
Van den Oord et al, “Representation Learning with Contrastive Predictive Coding”, NeurIPS 2018 Henaff et al, “Data-Efficient Image Recognition with Contrastive Predictive Coding”, ICML 2020 Chen et al, “A Simple Framework for Contrastive Learning of Visual Representations”, ICML 2020



Contrastive Learning with Data Augmentation

Each image tries to predict which
@« of the other 2N-1 images came
from the same original image

Batch of Two augmentations  Extract

N images  for each image features

Similarity between x; and x;:
S 5 1= ¢(xi)T¢(xj)
g Gl g Gl

If (x;, x;) is a positive pair,
then loss for x; is:
exp(si, j /’l’)
08 -2n
Y, exp(six/7)

k#i
(T is a temperature)

Li=_l
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Hadsell et al, “Dimensionality Reduction by Learning and Invariant Mapping”, CVPR 2006 Hjelm et al, “Learning deep representations by mutual information estimation and maximization”, ICLR 2019 Tian et al, “Contrastive Multiview Coding”, ECCV 2020
Wau et al, “Unsupervised Feature Learning by Non-Parametric Instance-Level Discrimination”, CVPR 2018 Bachman et al, “Learning Representations by Maximizing Mutual Information Across Views”, NeurlPS 2019 He et al, “Momentum Contrast for Unsupervised Visual Representation Learning”, CVPR 2020
Van den Oord et al, “Representation Learning with Contrastive Predictive Coding”, NeurIPS 2018 Henaff et al, “Data-Efficient Image Recognition with Contrastive Predictive Coding”, ICML 2020 Chen et al, “A Simple Framework for Contrastive Learning of Visual Representations”, ICML 2020



Contrastive Learning with Data Augmentation

Each image tries to predict which
@« of the other 2N-1 images came
from the same original image

Batch of Two augmentations  Extract

N images  for each image features

Similarity between x; and x;:
S 5 1= ¢(xi)T¢(xj)
g Gl g Gl

If (x;, x;) is a positive pair,
then loss for x; is:
exp(si, j /’l’)
08 -2n
Y, exp(six/7)

k#i
(T is a temperature)

Li=_l

Interpretation: Cross-entropy
loss over the other 2N-1
elements in the batch!

(WAVAWAWAWAY,

Hadsell et al, “Dimensionality Reduction by Learning and Invariant Mapping”, CVPR 2006 Hjelm et al, “Learning deep representations by mutual information estimation and maximization”, ICLR 2019 Tian et al, “Contrastive Multiview Coding”, ECCV 2020
Wau et al, “Unsupervised Feature Learning by Non-Parametric Instance-Level Discrimination”, CVPR 2018 Bachman et al, “Learning Representations by Maximizing Mutual Information Across Views”, NeurlPS 2019 He et al, “Momentum Contrast for Unsupervised Visual Representation Learning”, CVPR 2020
Van den Oord et al, “Representation Learning with Contrastive Predictive Coding”, NeurIPS 2018 Henaff et al, “Data-Efficient Image Recognition with Contrastive Predictive Coding”, ICML 2020 Chen et al, “A Simple Framework for Contrastive Learning of Visual Representations”, ICML 2020



SimCLR: A Simple Framework for Contrastive Learning

* SimCLR [Chen et al., 2020]

* A simple framework for contrastive learning without requiring specialized architectures or a memory bank

* This paper founds that contrastive learning benefits from ...
1. Strong augmentation (i.e., composition of multiple data augmentation operations)
2. A nonlinear MLP between the representation and the contrastive loss
3. Large batch sizes and longer training

Maximize agreement

Zi > ZJ
90| lo0)
h; <— Representation —> h;
f() F()

* source : https://ai.googleblog.com/2020/04/advancing-self-supervised-and-semi.html 86
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SimCLR: A Simple Framework for Contrastive Learning

* SimCLR [Chen et al., 2020]

* A simple framework for contrastive learning without requiring specialized architectures or a memory bank

* This paper founds that contrastive learning benefits from ...
1. Strong augmentation (i.e., composition of multiple data augmentation operations)
» Strong color distortion degrades supervised learning, but improves SimCLR
* A stronger augmentation (AutoAugment) degrades SimCLR

Crop
50

Cutout
40

Color

Sobel 30

1st transformation

Noise
20

Blur
10

Rotate

(f) Rotate {90°, 180°, 270° } (g) Cutout (h) Gaussian noise (i) Gaussian blur (j) Sobel filtering C/‘OQ

& \)&09‘ C,O\o( 60‘0’3\ \Aci\("‘e’ 2 ?\o-ga"e’ R
Color distortion strength Znd transformation
Methods 1/8 1/4 1/2 1 1 (+Blur) | AutoAug |
SimCLR 596 610 626 632 64.5 61.1
Supervised | 77.0 76.7 76.5 75.7 75.4 e o |
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SimCLR: A Simple Framework for Contrastive Learning

* SimCLR [Chen et al., 2020]

* Asimple framework for contrastive learning without requiring specialized architectures or a memory bank

* This paper founds that contrastive learning benefits from ...
2. A nonlinear MLP between the representation and the contrastive loss

70

Projection
B Linear
B Non-linear
[ | None
30

\}9’ 2° P

(o)}
o

Top 1
wm
o

N
(=)

Projection output dimensionality

h; +— Representation —» h;

f) f()

Maximize agreement
Zi ]
9() 9()

Linear / non-linear projection heads improve
representation learning.

A possible explanation:

e contrastive learning objective may discard useful
information for downstream tasks

e representation space z is trained to be invariant to
data transformation.

e by leveraging the projection head g(:), more
information can be preserved in the h representation
space

88



SimCLR: A Simple Framework for Contrastive Learning

* SimCLR [Chen et al., 2020]

* A simple framework for contrastive learning without requiring specialized architectures or a memory bank

* This paper founds that contrastive learning benefits from ...
3. Large batch sizes and longer training

70.0

67.

Large training batch size is crucial for
e i Large batch size causes large memory
o o 4 footprint during backpropagation:
>0 1 requires distributed training on TPUs
222 e (ImageNet experiments)

100 200 300 400 500 600 700 800 900 1000
Training epochs

wu

Figure 9. Linear evaluation models (ResNet-50) trained with differ-
ent batch size and epochs. Each bar is a single run from scratch.'”
89



SSL via Invariance

* SimCLR [Chen et al., 2020]

* A simple framework for contrastive learning without requiring specialized architectures or a memory bank

* SimCLR achieves outstanding performance in various downstream tasks

Fine-grained image classification tasks

Food CIFARIO CIFAR100 Birdsnap SUN397 Cars Aircraft VOC2007 DTD Pets Caltech-101 Flowers

Linear evaluation:

SimCLR (ours) 76.9 95.3 80.2 48.4 659 600 612 84.2 78.9 89.2 93.9 95.0
Supervised 752 95.7 81.2 56.4 649 68.8 63.8 83.8 78.7 92.3 94.1 94.2
Fine-tuned:

SimCLR (ours) 89.4 98.6 89.0 78.2 68.1 921 87.0 86.6 77.8 92.1 94.1 97.6
Supervised 88.7 98.3 88.7 77.8 67.0 914 88.0 86.5 78.8 93.2 94.2 98.0
Random init 88.3 96.0 81.9 77.0 53.7 913 8438 69.4 64.1 82.7 72.5 92.5

Semi-supervised learning in ImageNet Linear evaluation in ImageNet

Label fraction Method Architecture ~ Param (M) Top1 TopS5
Method Architecture 1% T ;0% Methods using ResNet-50:
i Local Agg. ResNet-50 24 60.2 s
Supervised baseline ResNet-50 48.4 80.4 MoCo ResNet-50 24 60.6 -
Mt afier il P PIRL ResNet-50 24 63.6 -
ethods using other label-propagation: CPC v2 ResNet-50 24 638 853
FeeIrdn- el ReSNERS e SimCLR (ours) ResNet-50 24 693 89.0
VAT+Entropy Min. ResNet-50 47.0 83.4
UDA (w. RandAug) ResNet-50 - 88.5 Methods using other architectures:
FixMatch (w. RandAug) ResNet-50 - 89.1 Rotation RevNet-50 (4 %) 86 554 -
S4L (Rot+VAT+En. M.) ResNet-50 (4 %) - 91.2 BigBiGAN RevNet-50 (4x) 86 61.3 819
[T NE—— —— T AMDIM Custom-ResNet 626 68.1 -
ethods using representation learning only: CMC ResNet-50 (2x) 188 634 882
InstDisc ResNet-50 39.2 77.4
e MoCo ResNet-50 (4x) 375 68.6 -
BigBiGAN RevNet-50 (4x) 55.2 78.8
CPC v2 ResNet-161 (x) 305 71.5  90.1
PIRL ResNet-50 57.2 83.8 .
SimCLR (ours) ResNet-50 (2x) 94 742 92.0
b A BogNerlfl(sy 709 3la SimCLR (ours) ResNet-50 (4x) 375 765 9322
SimCLR (ours) ResNet-50 75.5 87.8
SimCLR (ours) ResNet-50 (2x) 83.0 91.2
SimCLR (ours) ResNet-50 (4x)  85.8 92.6




ImageNet Top-1 Accuracy (%)

Training linear classifier on SimCLR features

%Supervised . #*SimCLR (4x)

75 — |
'A_,,,....»----*S'mC'-R (2x) Train feature encoder on

20 oCPCv2-L ImageNet (entire training set)

*SimCLR SOlie PP using SimCLR.

oPIRL-c2x AMDIM/.

65 ] eMoCo (2x) _

qCPCv2 PIRL-ens. Freeze feature encoder, train
50 *E,I'Séo eBigBiGAN a linear classifier on top with

LA labeled data.
eRotation

= e|nstDisc

25 50 100 200 400 626
Number of Parameters (Millions)

Source: Chen et al., 2020




Semi-supervised learning on SimCLR features

Label fraction

Method Architecture 1% 10%
Top 5

Supervised baseline ResNet-50 484 804
Methods using other label-propagation:

Pseudo-label ResNet-50 51.6 82.4
VAT+Entropy Min. ResNet-50 47.0 834
UDA (w. RandAug) ResNet-50 - 88.5
FixMatch (w. RandAug) ResNet-50 - 89.1
S4L (Rot+VAT+En. M.) ResNet-50 (4x) - 91.2
Methods using representation learning only:

InstDisc ResNet-50 392 774
BigBiGAN RevNet-50 (4x) 55.2  78.8
PIRL ResNet-50 572  83.8
CPC v2 ResNet-161(x) 719 912
SimCLR (ours) ResNet-50 75.5 87.8
SimCLR (ours) ResNet-50 (2x) 83.0 91.2
SimCLR (ours) ResNet-50 (4x) 85.8 92.6

Table 7. ImageNet accuracy of models trained with few labels.

Train feature encoder on
ImageNet (entire training set)
using SIMCLR.

Finetune the encoder with 1% /
10% of labeled data on
ImageNet.

Source: Chen et al., 2020




Momentum Contrastive Learning (MoCo)

e Momentum Contrast (MoCo) [He et al., 2019]
* Key issue: the number of negatives is very crucial in contrastive learning
* How to resolve this issue in prior works? Memory Bank
* Note: representations in the memory bank are momentum-updated

* MoCo’s idea: use a momentum-updated encoder and maintain a queue

contrastive loss contrastive loss contrastive loss
q- k q- k q- k
q k q k q k
encoder q encoder k encoder ARl encoder e
encoder
memory
k bank k
x? x G x4 x
(a) end-to-end (b) memory bank (c) MoCo

* Momentum encoder increases the key representations’ consistency
* Queue allows us to use recent and many negative samples
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Momentum Contrastive Learning (MoCo)

e Momentum Contrast (MoCo) [He et al., 2019]

* Key issue: the number of negatives is very crucial in contrastive learning

* How to resolve this issue in prior works? Memory Bank

* Note: representations in the memory bank are momentum-updated

* MoCo’s idea: use a momentum-updated encoder and maintain a queue

* MoCo also optimizes contrastive learning objective

Eq’kﬂ-’{k—} = — log

exp(q - k*/7)
exp(q - kt/7) + > - exp(q -k~ /7)

Randomly augmented samples —

loss

affinity kﬁfiﬂjj'“kij

&y

|

momentum
encoder

encoder
{/(;}

concat

Wi

queue

0
\ \
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Momentum Contrastive Learning (MoCo)

e Momentum Contrast (MoCo) [He et al., 2019]

* Key issue: the number of negatives is very crucial in contrastive learning
* How to resolve this issue in prior works? Memory Bank

* Note: representations in the memory bank are momentum-updated

* MoCo’s idea: use a momentum-updated encoder and maintain a queue

loss
* MoCo also optimizes contrastive learning objective afinity FEFEE - B
exp(qg -kt /T
»Cq,k+,{k—} - — log 7 - ( / ) —
exp(q -IkY/T) + 2>, exp(q -1k /T) &

concat

» After encoder is updated, ﬂ ﬂ

* Momentum encoder is updated by | |
Hmomentum é_"rnfemomentum —+ (1 __771)6

e Add the current positive keys L+ into the queue

Wi

queue

momentum
encoder
encoder

Randomly augmented samples — H] H W
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Momentum Contrastive Learning (MoCo)

e Momentum Contrast (MoCo) [He et al., 2019]

* MoCo’s idea: use a momentum-updated encoder and maintain a queue

contrastive loss contrastive loss contrastive loss
qk qk qk
q k q k q k
encoder q encoder k encoder el encoder paeshiin
encoder
memory
k bank k
z? T G z? x
(a) end-to-end (b) memory bank (c) MoCo

* Momentum encoder increases the key representations’ consistency
* Queue allows us to use recent and many negative samples

60 -
58.0
58 A =
g\: 57.3 56.5 =" -
momentum 7m ‘ 0 0.9 0.99 0.999  0.9999 56 e _ oA
) ; -
accuracy (%) ‘ fail 552 57.8 59.0 58.9 §54 %o 541~
© [ .
52_0/-/' —*— end-to-end
52 - P —®-- memory bank
2 MoCo
50 SOvMO/ L - | - - L L 1
os6  sfdgoridamic Intelligoece Lab 16384 65536

K (log-scale)



Momentum Contrastive Learning (MoCo)

, Key differences to SImCLR:
contrastive loss no_grad
simil'arity | / e Keep arunning queue of keys
| (negative samples).
q ko kl kg e Compute gradients and update the
queue encoder only through the queries.
e Decouple min-batch size with the
sncoder momentum number of keys: can support a large
encoder number of negative samples.
ke ke ke
query Y Y y
Xz Lo~ 1"~ Ty~ ...

Source: He et al., 2020




Momentum Contrastive Learning (MoCo)

contrastive loss no_grad

simil'arity ~ /

q ko k1 ko ...
queue
sncoder momentum
encoder
ke ke ke
xquery 5’30 Y 551 Y x2 y

Key differences to SImCLR:

Keep a running queue of keys
(negative samples).

Compute gradients and update the
encoder only through the queries.

Decouple min-batch size with the
number of keys: can support a large
number of negative samples.

The key encoder is slowly progressing
through the momentum update rules:

Ox < MmO + (1 — m)bq

Source: He et al., 2020




MoCo

Generate a positive pair
by sampling data
augmentation functions

/ # positive logits: Nxl1
. 1l _pos = bmm(g.view(N,1,C), k.view(N,C,1))
No gradient through

the positive sample

Update the FIFO
negative sample queue

Algorithm 1 Pseudocode of MoCo in a PyTorch-like style.

# f_gq, f_k: encoder networks for query and key
# queue: dictionary as a queue of K keys (CxK)
# m: momentum

# t: temperature

f_k.params = f_g.params # initialize
for x in loader: # load a minibatch x with N samples

X_q = aug(x) # a randomly augmented version

x_k = aug(x) # another randomly augmented version
qg = f_g.forward(x_qg) # queries: NxC

k = f k.forward(x k) # keys: NxC

k = k.detach() # no gradient to keys|]

# negative logits: NxK
l_neg = mm(g.view(N,C), queue.view(C,K))

# logits: Nx (1+K)
logits = cat([l_pos, 1l_neg], dim=1)

# contrastive loss, Eqgn. (1)
labels = zeros(N) # positives are the 0-th
loss = CrossEntropyLoss (logits/t, labels)

# SGD update: query network
loss.backward()
update (f_g.params)

# momentum update: key network

# update dictionary
enqueue (queue, k) # enqueue the current minibatch
dequeue (queue) # dequeue the earliest minibatch

f_k.params = mxf_k.params+ (1l-m)*xf_g.params |

bmm: batch matrix multiplication; mm: matrix multiplication; cat: concatenation.

Use the running

. queue of keys as the

negative samples

INfONCE loss

Update f_k through
momentum

Source: He et al., 2020




“MoCo V2~

Improved Baselines with Momentum Contrastive Learning

Xinlei Chen Haoqi Fan Ross Girshick Kaiming He
Facebook AI Research (FAIR)

A hybrid of ideas from SimCLR and MoCo:
e From SimCLR: non-linear projection head and strong data augmentation.
e From MoCo: momentum-updated queues that allow training on a large number of negative
samples (no TPU required!).

Source: Chen et al., 2020




MoCo vs. SImCLR vs. MoCo V2

Key takeaways:

unsup. pre-train ImageNet VOC detection

case MLP aug+ cos epochs acc. APs9g AP APy5
supervised 76.5 81.3 53.5 58.8
MoCo vl 200 60.6 81.5 559 62.6
(a) v 200 66.2 82.0 564 62.6

(b) v 200 63.4 82.2 56.8 63.2

(c) v v 200 67.3 825 57.2 639

(d) v v v 200 67.5 824 57.0 63.6

(e) v v v 800 71.1 82.5 574 64.0

Table 1. Ablation of MoCo baselines, evaluated by ResNet-50 for
(1) ImageNet linear classification, and (ii) fine-tuning VOC object
detection (mean of 5 trials). “MLP”: with an MLP head; “aug+”:
with extra blur augmentation; “cos”: cosine learning rate schedule.

Non-linear projection head and
strong data augmentation are crucial
for contrastive learning.

Source: Chen et al., 2020




MoCo vs. SImCLR vs. MoCo V2

Key takeaways:

unsup. pre-train ImageNet

case MLP aug+ cos epochs batch acc.
MoCo vl [6] 200 256 60.6
SimCLR [2] v v v 200 256 61.9
SimCLR [2] v v v 200 8192 66.6
MoCo v2 v v v 200 256 67.5
results of longer unsupervised training follow:

SimCLR [2] v v v 1000 4096 69.3
MoCo v2 v v v 800 256 71.1

Table 2. MoCo vs. SimCLR: ImageNet linear classifier accuracy
(ResNet-50, 1-crop 224 x224), trained on features from unsuper-
vised pre-training. “aug+” in SImCLR includes blur and stronger
color distortion. SimCLR ablations are from Fig. 9 in [2] (we
thank the authors for providing the numerical results).

Non-linear projection head and
strong data augmentation are crucial
for contrastive learning.

Decoupling mini-batch size with
negative sample size allows
MoCo-V2 to outperform SimCLR with
smaller batch size (256 vs. 8192).

Source: Chen et al., 2020




MoCo vs. SImCLR vs. MoCo V2

Key takeaways:

mechanism  batch  memory / GPU  time / 200-ep.

MoCo 256 5.0G 53 hrs
end-to-end 256 7.4G 65 hrs
end-to-end 4096 93.0GT n/a

Table 3. Memory and time cost in 8 V100 16G GPUs, imple-
mented in PyTorch. ': based on our estimation.

Non-linear projection head and
strong data augmentation are crucial
for contrastive learning.

Decoupling mini-batch size with
negative sample size allows
MoCo-V2 to outperform SimCLR with
smaller batch size (256 vs. 8192).

... all with much smaller memory
footprint! (“end-to-end” means
SImCLR here)

Source: Chen et al., 2020




ImageNet Linear Classification from SSL
90 Features

80 76.5
70 69.3

60.6

31

, 60 554
. 51.4 48.4
5 50 46 '
- 44.6
Z 39.6
— 40
S
[t
30
20
10
0
Exemplar Context Jigsaw Rotation  Colorization DeepCluster MoCo SimCLR  SimCLR Moco-v3
Prediction (ResNet50) (ResNet50) (ResNet50x4)
He et al, “Momentum Contrast for Unsupervised Visual Representation Learning”, CVPR (ViT—BN-L/7%
2020 Chen et al, “A Simple Framework for Contrastive Learning of Visual Representations”, : H
ICML 2020 Chen et al, “An Empirical Study of Training Self-Supervised Vision Transformers”, (LOtS Of caveats here o d Ifferent arChIteCtu res

ICCV 2021 etc)



ImageNet Linear Classification from SSL

90 Features
Contrastive approaches 31
80 _ PP 76.5
give huge 69 .3
70 improvements! '
60.6
60 55.4
5 51.4 484
5 50 46 :
- 44.6
g 39.6
— 40
o
|_
30
20
10
0
Exemplar Context Jigsaw Rotation  Colorization DeepCluster MoCo SimCLR SimCLR Moco-v3
Prediction (ResNet50) (ResNet50) (ResNet50x4) (ViT-BN-L/7)
He et al, “Momentum Contrast for Unsupervised Visual Representation Learning”, CVPR
2020 Chen et al, “A Simple F k for Contrastive Learning of Visual R tations”, : :
|CML 2020 Chen et al, “An Empirical Study of Training Self-Supervised Vision Transformers”, (Lots of caveats here ... different architectures,

Iccv 2021 etc)



ImageNet Linear Classification from SSL

70 Features Improved training, and
80 swapping ResNet for ViT
0 further improves results
60.6
60 1.4 55.4
< 39.6
j 40
o
~ 30
20
10
0
Exemplar Context Jigsaw Rotation  Colorization DeepCluster MoCo
Prediction (ResNet50)

He et al, “Momentum Contrast for Unsupervised Visual Representation Learning”, CVPR

2020 Chen et al, “A Simple Framework for Contrastive Learning of Visual Representations”,
ICML 2020 Chen et al, “An Empirical Study of Training Self-Supervised Vision Transformers”,

ICCV 2021

76.5
69.3

SimCLR SimCLR MoCo-v3
(ResNet50) (ResNet50x4) (ViT-BN-L/7)



Contrastive SSL Pre-training then Fine-tuning on Detection
m VOC 07+12 Detection m COCO Detection m COCO Instance Segmentation

60 G 57 57
Features learned from 53.5 '
50 SSL methods match
supervised pre training
20 on ImageNet 382 37.9 39.2 39.2
E: 33.8 33.3 33.3 34.3 34.4
€
o 29.3
<< 30 26.4
S~
(o
<
20
) I I
0
Scratch ImageNet SimCLR+ MoCo-v2+ SimSiam
Supervised (optimal)

He et al, “Momentum Contrast for Unsupervised Visual Representation Learning”, CVPR 2020

Chen et al, “Improved Baselines with Momentum Contrastive Learning”, arXiv 2020
Chen et al, “A Simple Framework for Contrastive Learning of Visual Representations”, ICML 2020

Chen and He, “Exploring simple Siamese representation learning”, CVPR 2021



Summary: Contrastive Representation Learning

A general formulation for contrastive learning:

score(f(x), f(x™)) >> score(f(x), f(z7))

InNfoONCE loss: N-way classification among positive and negative samples

exp(s(f(z), f(z™))
exp(s(f(), f(z)) + 2=, exp(s(f(2), f(z))

L=-Ex log

Commonly known as the InNfoNCE loss (van den Oord et al., 2018)
A lower bound on the mutual information between f(x) and f(x)

MI[f(x), f(x7)] —log(N) = —L



Summary: Contrastive Representation Learning

SIimCLR: a simple framework for
contrastive representation learning

e Key ideas: non-linear projection head to
allow flexible representation learning

e Simple to implement, effective in learning
visual representation

e Requires large training batch size to be
effective; large memory footprint

Maximize agreement

h; <— Representation —> h;



Summary: Contrastive Representation Learning

MoCo (v1, v2): contrastive learning using
momentum sample encoder:

Decouples negative sample size from
minibatch size; allows large batch training
without TPU

MoCo-v2 combines the key ideas from
SImMCLR, i.e., nonlinear projection head,
strong data augmentation, with momentum
contrastive learning

contrastive loss

similarity
q ko k1 ko ...
queue
encoder momentum
encoder
ke ke ke
xqm%y xOY'$IY'x2Y o



Summary: Contrastive Representation Learning

* Limitations in contrastive learning (with negatives)
* |t is sensitive to the number of negative = a large batch size or a queue is required
* Are all the different instances negative?

Positive pair

Negative pair ’ (

* Q) can we learn representations without negative samples?

) J(

This relation might be not true

e Simply minimizing leads to mode collapse, i.e.,

* Next: Positive-only approaches

Algorithmic Intelligence Lab
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“Self” Distillation

» What we want fo(I) = fo(augment(I))
e How we do it festudent(l) — ;eacher(augment(l))

e Prevent trivial solutions by asymmetry

« Asymmetric learning rule between student
teacher

« Asymmetric architecture between student
teacher



e Bootstrap You Own Latent (BYOL) [Grill et al., 2020]
* Idea: directly bootstrap the representations

e What we erad v/ similarity
Waik(I) = fo(augment (1)) predictor
o How, we GO it icac er e
f\é\é (I-LP t " (augment([)) Student  encoder —— e,:l(;r;ér Teacher

R

“Target”

BYOL - Grill et al., 2020



* |dea: directly bootstrap the represen

view

tations

t,

Jo

e Bootstrap You Own Latent (BYOL) [Grill et al., 2020]

representation

e N

Y

J s

Je

Objective
/
_ || _q0(=p) Z I
Layo. = H lgo(zo) Iz

Y

E
o

projection prediction
ge [j | qe
> ZG \ online
loss :
>| Zé | AA—> sg(zf) ¥  target
ge| L5 | &
Update
0 <+ optimizer(é’, VGEBYOL)
E—T1E4+(1—1)0

* Key components: target (momentum) network, predictor, stop-gradient (sg)

114
* source : [Grill et al., 2020] 25



e Bootstrap You Own Latent (BYOL) [Grill et al., 2020]
* Idea: directly bootstrap the representations

view representation projection prediction

G ~ = ™ e

inpu ‘ ge | q9
€r
/ | / |
¢ U - =
D Jji: L)

Y

J s

Y
G
e

loss

N~_-—

AA—> sg(zf) ¥  target

gg

sg
Objective Update
L qo(z9) 0 + optimizer(é’, VGEBYOL)
Lovor = H lao(zo)l — Tlz¢] H

Where: 5 — T€+ (1 —7')9
e Lpvor: The loss function that measures the difference between two normalized
representations.
* qp(zp): The predicted representation from the online network.
. zé: The target representation from the target network.
* ||gs(ze)||: The L2 norm (magnitude) of the predicted representation.
. ‘ZE“ The L2 norm (magnitude) of the target representation.

‘gt’( ; : The L2-normalized predicted representation.

. —=—‘ The L2-normalized target representation.
* | - ||%: The squared Euclidean distance between the two normalized vectors. 115



1. Two Views of an Image:

» Given animage, BYOL applies two different augmentations to create two different views of
the same image.

» Oneview is processed by an online network (with parameters 6).
» The other view is processed by a target network (with parameters &).

2. Feature Extraction:

. . X i d view representation rojection dicti
» zgisthe representation of the first view, extracted by the online encoder. ¢ . ,ep E R e preciction
! - . A input fg ga qg
* zistherepresentation of the second view, extracted by the target encoder. image ¢ U > S online
L7 \

3. Projection & Prediction:
» The online network has an extra predictor network gp, which maps zy to a predicted

e
representation gy(2). t v i
Je

» The target network does not have a predictor; it directly outputs zé. ; il b .

I / ‘
> Zg

=

g¢

(BYOL) [Grill et al., 2020]

4. Normalization:
» Both gp(2p) and zé are L2-normalized, meaning they are converted to unit vectors.

» This ensures that their magnitudes do not affect the loss, focusing only on directional

similarity.
5. Loss Computation:
» The loss measures the squared Euclidean distance (or equivalently, cosine similarity)

between the predicted vector from the online network and the representation from the

target network. 16



e Bootstrap You Own Latent (BYOL) [Grill et al., 2020]
* Idea: directly bootstrap the representations

view representation projection prediction
: — Jo — go — a0
input
image t @ Yo 29 q0(20) . online
/Y—/ -~ - ) %
\
\
1o :
:
RN PR . ,
N ’
t v Y 2 sg(z¢) ¥ target
— ,f& 3 Sg

* BYOL is more robust to the choice of batch sizes and augmentations

Q 2
(=) o=
=0 [ @~— = 08 —— BYOL
O — P
3 . :: .\. é ?’ = SimCLR (repro)
Ne) _
i g “
£ 3
o ® 3= O
= 5 10 g
g -2 & T——e
5 3 15
13} @® Q
8 _3 ‘3
[ o —20
© [ ) Q
(] % @,
& 4} — BvoL S 25 \.
5 —— SimCLR (repro) € g ———e
8 Baseline Remove Remove Crop + Crop
4096 2048 1024 512 256 128 grayscale  color  bluronly  only
Batch size Transformations set
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e Bootstrap You Own Latent (BYOL) [Grill et al., 2020]
* Idea: directly bootstrap the representations

view representation projection prediction
: — Jo — go — ao
input
image t @ Yo 29 q0(20) . online
/Y—/ -~ - ) %
\
\
1o :
—— l’
'
N ’
t' v’ Y 2 sg(zp) ¥ target
— ,f£ 9¢ Sg

* BYOL is more robust to the choice of batch sizes and augmentations
* BYOL achieves 74.3% linear evaluation accuracy; supervised learning does 76.5%

80 % Sup. (200-2x)
BYOL (200-2X)% gy, ()

Sup, (%Y.OL (4x)
@
T L il

~
[ee}

S
P
2
5 76 SimCLR (4x)
o
2
e
&, BYOL SimCLR (2X)
e
3 InfoMin
5}
% 72
eh Gl CPCv2-L
£ MoCov2
= 70
; MoCo
SimCLR AMDIM
68
25M 50M 100M 200M 400M 118

Number of parameters



* DINO [Caron et al., 2021]

* |dea: representation learning via self knowledge-distillation similarity \
e What we . /
grad ; [EEEIEE Softmax
WILtI) = fo(augment(I)) Y +center
e How we do it 222;% mom.
grdent(I) = fgerher (augment(7)) encoder encoder

N/

Image

Ka

“Target”

DINO - Caron et al., 2022




* DINO [Caron et al., 2021]
* |dea: representation learning via self knowledge-distillation

| softmax

|

student ggs

loss:
- p2 log p1

€ma

P

softmax

centering

|

teacher gg;

- Key components:

* (self) knowledge-distillation
* Distill the teacher (EMA version of a student) knowledge to the student
* multi-crop: a strategy to generate positive views

Objective
Lpinvo = H(Pe(x), Ps(x))

Update

95 = Optimizer(es, VGSLDINO)
Ht s /19t 2 (1 et A)Hs

« H(Pi(z), Ps(x)) represents the cross-entropy loss between the two probability distributions
Pi(z) and Ps(z).

t
(z)

« P,(x)is the output (probability distribution) of the teacher network.
(z)i

» Ps(z)isthe output of the student network.

e centering and sharpening: a strategy to avoid collapse

120



* DINO [Caron et al., 2021]

* |dea: representation learning via self knowledge-distillation

loss:
Q -pzlogp

| softmax |

€ma
student ggs —

Sg

softmax

centering

teacher gg;

1. Two Networks (Teacher & Student):
* The student network learns to predict the teacher’s softmax outputs.

* The teacher network is a momentum-updated version of the student (like BYOL, without
requiring negative samples).

2. Output Probability Distributions:

* Both networks process different augmentations of the same image.

» Their outputs are converted into probability distributions using a softmax function.
3. Cross-Entropy Loss:

« The loss encourages the student to match the teacher’s predictions.

» Since the teacher network updates slowly (using an exponential moving average of the

student), it provides a stable learning target.

* DINO constructs a set of views V via multi-crop strategy:

* (1) global views: x§, x5,

* (2) local views with smaller resolution

 All crops are passed through the student; only the global views are passed through the teacher:

“local-to-global” correspondences

* Therefore, the loss is written as:

7 /
ze{zi,xz5} 2'€V

e 121



* DINO [Caron et al., 2021]
* |dea: representation learning via self knowledge-distillation

loss:
) etz (2
sg

I softmax | | softmax |

| centering |

€cma
student ggs —_— teacher gg¢

* DINO avoids the collapse via centering and sharpening
e Centering: adding a bias term c to the teacher
gi(z) < gi(z) + ¢

* The center cis updated with an exponential moving average
B

1
c+—mc+(1— m)B~ det(xi)
=1

e Sharpening: using a low value for the temperature T,in the teacher softmax normalization
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* DINO [Caron et al., 2021]
* |dea: representation learning via self knowledge-distillation

* DINO [Caron et al., 2021]
* DINO outperforms previous contrastive methods in classification tasks

» Self-supervised ViT features contain explicit information about the semantic segmentation of an image

Method Arch. Param. im/s Linear kAk-NN
Supervised RINS50 23 1237 79.3 79.3
SCLR [12] RNS50 23 1237 69.1 60.7
MoCov2 [15] RNS50 23 1237  71.1 61.9
InfoMin [67] RNS50 23 1237 73.0 65.3
BarlowT [81] RNS0 23 1237 732 66.0
OBoW [27] RNS50 23 1237 73.8 61.9
BYOL [30] RN50 23 1237 74.4 64.8
DCv2 [10] RNS50 23 1237 75.2 67.1
SwWAV [10] RNS50 23 1237 75.3 65.7
DINO RNS50 23 1237 75.3 67.5
Supervised ViT-S 21 1007 79.8 79.8 . . .
BYOL" [30] ViT-S 21 1007 71.4 66.6 Self-attention map on [CLS] of self-supervised ViT
MoCov2™ [15] VIiT-S 21 1007 72.7 64.4
SWAV™* [10] ViT-S 21 1007 73.5 66.3 Method Data Arch. (TE&F)m TIm Fon
DINO ViT-S 21 1007 77.0 74.5 2
Supervised
Comparison across architectures ImageNet INet ViT-S/8 66.0 63.9 68.1
SCLR [12] RN50w4 375 117 76.8 69.3 STM [48] /D/Y RN50 81.8 79.2 843
BYOL [30]  RNSOw> 03 384 774 = Self-supervised
30 3 —
DINO 501 ViT—Bx6 85 312 78.2 76.1 CT|[71] VLOG RIN50 48.7 46.4 50.0
SwAV [10] RNS50wWS 586 76 78.5 67.1 MAST [40] YT-VOS RIN18 65.5 63.3 67.6
BYOL [30] RNS0Ow4 375 117 78.6 _ STC [?7 ‘/'] Kinetics RIN18 67.6 64.8 70.2
BYOL [30] RN200w?2 250 123 79.6 739 DINO INet ViT-S/16 61.8 60.2 634
DINO ViT-S/8 21 180 79.7 78.3 DINO INet ViT-B/16 62.3 60.7 63.9
SCLRv2 [13] RNI152w3+SK 794 46 79.8 73.1 DINO INet ViT-S/8 69.9 66.6 731
DINO ViT-B/8 85 63 80.1 77.4 DINO INet ViT-B/8 71.4 67.9 74.9
Top-1 accuracy for linear and k-NN evaluations on the Video instance segmentation on top of
validation set of ImageNet self-supervised feature 123



DINO v2: Learning Robust Visual Features without Supervision

* DINO v2 [Oquab et al., 2023]

» Data preprocessing (LVD-142M dataset)

e Curated dataset from ImageNet and fine-grained dataset

* Uncurated dataset sourced from crawled web data

* Deduplication: remove near-duplicate images to increase diversity

e Self-supervised image retrieval: using ImageNet-22k pretrained ViT-H/16, retrieve relevant data from
uncurated source using K-means clustering

Uncurated Data

[TTT

N s
l AN
e XS

[TTT

Curated Data Embedding

Deduplication

Retrieval

Augmented Curated Data

———

—

@ ¢
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DINO v2: Learning Robust Visual Features without Supervision

* DINO v2 [Oquab et al., 2023]
» Data preprocessing (LVD-142M dataset)
e Curated dataset from ImageNet and fine-grained dataset
e Uncurated dataset sourced from crawled web data
* Deduplication: remove near-duplicate images to increase diversity

e Self-supervised image retrieval: using ImageNet-22k pretrained ViT-H/16, retrieve relevant data from
uncurated source using K-means clustering

e LVD-142M maintains ImageNet-1K performance while improving in other domains

Training Data INet-1k Im-A ADE-20k Oxford-M
INet-22k 85.9 73.5 46.6 62.5
INet-22k \ INet-1k 85.3 70.3 46.2 58.7
Uncurated data 83.3 59.4 48.5 54.3

LVD-142M 85.8 73.9 47.7 64.6
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DINO v2: Learning Robust Visual Features without Supervision

* DINO v2 [Oquab et al., 2023]
* Training method
* Use both image-level objective in DINO and MIM objective in iBOT
* KolLeo regularizer: minimize the differential entropy of features
* Encourage features to be uniformly distributed

Ekoleo — _—y: Zn 1 log(dn,i), where dn,i = minj;é,,; ||3§'Z == SCJ”

v’ 1=

» Effect of KoLeo loss term and Masked Image Modeling from iBOT

KoLeo INet-1k Im-A ADE-20k Oxford-M MIM INet-1k Im-A ADE-20k Oxford-M

X 85.3 70.6 47.2 55.6 X 85.3 72.0 44.2 64.3
v 85.8 72.8 47.1 63.9 v 85.8 72.8 47.1 63.9

(a) Koleo loss (b) MIM objective in iBOT
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DINO v2: Learning Robust Visual Features without Supervision

* DINO v2 [Oquab et al., 2023]

* DINO v2 matches domain generalization performance of CLIP

* Linear probing experiments on ImageNet-A/R/C/Sketch

Method Arch Data Im-A Im-R Im-C| Sketch
OpenCLIP ViT-G/14 LAION 63.8 87.8 45.3 66.4
MAE ViT-H/14 INet-1k 10.2 344 61.4 21.9
DINO ViT-B/8  INet-1k 239 37.0 56.6 25.5
iBOT ViT-L/16 INet-22k 41.5  51.0 43.9 38.5
ViT-S/14 LVD-142M 33.5 53.7 54.4 41.2
DINOv2 ViT-B/14 LVD-142M 55.1  63.3 42.7 50.6
M ViT-L/14 LVD-142M 71.3 744 31.5 59.3
ViT-g/14 LVD-142M 75.9 T78.8  28.2 62.5
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DINO v2: Learning Robust Visual Features without Supervision

* DINO v2 [Oquab et al., 2023]

 DINO v2 is better at transferring to vision tasks
* Semantic segmentation on ADE20K, Cityscapes, Pascal VOC with frozen feature

e Depth estimation on NYUd, KITTI, NYUd -> SUN RGB-D with frozen feature

NYUd KITTI NYUd — SUN RGB-D

(0.330) (2.10) (0.421)
Method Arch. lin.1 lin. 4 DPT lin.1 lin. 4 DPT lin. 1 lin. 4 DPT
OpenCLIP ViT-G/14 0.541 0.510 0.414 3.57 3.21 2.56 0.537 0.476 0.408
MAE ViT-H/14 0.517 0.483 0.415 3.66 3.26 2.59 0.545 0.523 0.506
DINO ViT-B/8 0.555 0.539 0.492 3.81 3.56 2.74 0.553 0.541 0.520
iBOT ViT-L/16  0.417 0.387 0.358 3.41 3.07 2.55 0.447 0.435 0.426
ViT-S/14  0.449 0.417 0.356 3.10 2.86 2.34 0477 0.431 0.409
DINOV2 ViT-B/14 0.399 0.362 0.317 2.90 2.59 2.23 0.448  0.400 0.377
¥ ViT-L/14 0.384 0.333  0.293 2.78 2.50 2.14 0.429 0.396 0.360
ViT-g/14 0.344 0.298 0.279 2.62 2.35 2.11 0.402 0.362 0.338

Algorithmic Intelligence Lab
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e Generative Visual foundation models
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[Devlin et al, NAACL 2019] [He et al, CVPR 2022]

What is Masked Auto-Encoding (MAE)?

*Very simple method, but highly effective
 BERT-like masked modeling objective, but with crucial

design changes for computer vision S

[[[[[




[Devlin et al, NAACL 2019]

BERT-unlike: Encoder-Decoder

projection layer
* MAE:
» Large encoder on visible tokens
« Small decoder on all tokens

* Projection layer to connect the two EENEE
T T

FENEN >,

IR

\
4

\
lencoder — decoder| -

input

target

/
\

Wi AN A 7
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[Devlin et al, NAACL 2019]

BERT-unlike: Encoder-Decoder

projection layer
* MAE:
» Large encoder on visible tokens
. SmaII decoder on all tokens

~

—> decoder

*Very efficient when coupled with high e L g g target
mask ratio (75%)
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Masked Autoencoders (MAE)

* MAE [He et al., 2022]
* Task: Predicting the pixel values for each masked patch

The loss function is:

where:

* Objective: MSE loss of masked patches

1 2
L= M Z | fo(zv)i — @:il|”

1M

M is the set of masked patches.

encoder — decoder :

| M | is the number of masked patches.

fo(z,) is the MAE model's reconstruction for the masked patches.

‘k
LB Il [ |
| |

x; is the ground-truth pixel value of the masked patch.

Key components:
e High masking ratio (75%):
* BERT masks 15% of tokens, MAE needs higher masking ratio
* Asymmetric encoder-decoder architecture:
* MAE allows to train very large transformer encoder by using the lightweight decoder => it
significantly reduces the pre-training time 133



How MAE Works?

Divide image into non overlapping
patches, discard most of them

Random masking
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How MAE Works?

Divide image into non overlapping
patches, discard most of them

HESEN
HVEN=
FENER >
rs. ®
EEREEN

input

encoder

Encode visible patches
with VIiT
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How MAE Works?

Divide image into non overlapping
patches, discard most of them

HEESER
U1 1 FE
Al s
rs. W
L]

input

o

_B [ B
[ J

encoder —

Add mask tokens

136



How MAE Works?

Divide image into non overlapping
patches, discard most of them

HESER
1B
FENER >
Vi |
EEREEN

input

/

~

\ E 0
_B [ Y

N decoder

encoder —

Reconstruct

Decoder is a small ViT that predicts
pixel values of the masked patches
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MAE for Downstream Tasks: Encoder Only

 After MAE pre-training, just throw away the decoder

* Encoder is used for representations with full-sequence input

( \
HPNE™
myile o
’...- —>» |encoder| —>»

input
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Masked Autoencoders (MAE): Reconstructions

Input Patches Prediction Actual Image

He et al, “Masked Autoencoders are Scalable Vision Learners”, CVPR 2022



Masked Autoencoders (MAE): Reconstructions

Input Patches Prediction Actual Image

He et al, “Masked Autoencoders are Scalable Vision Learners”, CVPR 2022



Masked Autoencoders (MAE): Reconstructions

Input Patches Prediction Actual Image

He et al, “Masked Autoencoders are Scalable Vision Learners”, CVPR 2022



MAE Reconstruction Example

Masked input: 80% You guess?
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MAE Reconstruction Example

Masked input: 80% MAE’s guess
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original
85% mask

MAE Can Generalize
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95% mask

original
85% mask

MAE Can Generalize




75% mask

95% mask

original

85% mask

MAE Can Generalize




SSL Pretraining, then fine-tuning for ImageNet Classification
mViTB mViT-L mViT-H mViT-H-448

87.8
86.9
85.9
84.1
T 83.1 ] I I&:’,.6 III
MAE

Scratch MoCo-v3

Top1l Accuracy
00 0 00 00 O
N B O 00 O

N O
c O

MAE Pretraining outperforms training from scratch, and allows scaling to larger ViT models

He et al, “Masked Autoencoders are Scalable Vision Learners”, CVPR 2022



Masked Autoencoders (MAE)

* MAE [He et al., 2022]
* Task: Predicting the pixel values for each masked patch
* Asymmetric encoder-decoder architecture: MAE uses the lightweight decoder

blocks  ft lin dim It Lis e

1 34.8 65.5 128 84.9 69.1

2 84.9 70.0 256 84.8 13

4 84.9 71.9 512 84.9 73.5

8 84.9 73.5 768 84.4 73.1

12 84 .4 73.3 1024 84.3 73.1
(a) Decoder depth. A deep decoder can im- (b) Decoder width. The decoder can be nar-
prove linear probing accuracy. rower than the encoder (1024-d).

* The decoder depth is less influential for improving fine-tuning
* Only a single transformer block decoder can perform strongly with fine-tuning

 MAE decoder uses the decoder with 8 blocks and a width of 512-d, which has 9% FLOPs per token vs. ViT-L



Masked Autoencoders (MAE)

* MAE [He et al., 2022]
* Task: Predicting the pixel values for each masked patch
* Other properties of MAE

case ft lin FLOPs case ft lin case ft lin
encoder w/ [M] 842 59.6  3.3X pixel (w/o norm) 84.9 73.5 none 84.0 65.7
encoder w/o [M)] RSN 1% pixel (w/ norm) 85.4 73.9 crop, fixed size 84.7 73.1
PCA 84.6 72.3 crop, rand size 84.9 73.5
dVAE token 85.3 71.6 crop + color jit 84.3 71.9
(c) Mask token. An encoder without mask to- (d) Reconstruction target. Pixels as recon- (e) Data augmentation. Our MAE works with
kens is more accurate and faster (Table 2). struction targets are effective. minimal or no augmentation.

(c) MAE skips the mask token [M] in the encoder and apply it later in the decoder
* It is more accurate and decreases the computation time

(d) Predicting pixels with per-patch normalization improves accuracy

(e) MAE works well using cropping-only augmentation

 MAE behaves decently even if using no data augmentation "



Analysis: Augmentations

case ft lin

none 84.0 0./ :
) o § X = G, LR

crop, fixed size 84.7 73.1 S < >

crop, rand size 849 735 TEE XIS <

crop +colorjit 843  71.9 X 3

 MAE can work with minimal data augmentation
* For Contrastive / Siamese learning, augmentation is crucial
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Analysis: Augmentations

case ft

none 84.0
crop, fixed size 84.7
crop, rand size 34.9
crop + color jit 84.3

lin
01/
131
73.5
71.9

[Assran et al, ECCV 2022] [Assran et al, CVPR 2023]

 MAE can work with minimal data augmentation

 For Contrastive / Siamese learning, augmentation is

crucial

* Masking as a strong “augmentation”: MSN, |-JEPA



Masked Autoencoders (MAE)

e MAE [He et al., 2022]
* Task: Predicting the pixel values for each masked patch
e Other properties of MAE

case ratio ft lin
random 75 84.9 735
block 50 83.9 723
block 75 82.8 639
grid 75 84.0 66.0
(f) Mask sampling. Random sampling works , , . — .
the best. See Figure 6 for visualizations. o — " block 50% grid 75% ‘

(f) Random patch masking is better than block-wise and grid-wise sampling
* Block-wise sampling: Removes large random blocks
* Grid-wise sampling: Keeps one of every four patches
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* Image-BERT Pretraining with online tokenizer (IBOT) [Zhou et al., 2022]

* Perform patch-level self-distillation on masked patch tokens (while DINO is done
with image-level objective)

* Use data augmentation for invariance learning
* Unlike BEIT, image tokenizer is jointly learned (i.e., online tokenizer)

~[CLS .
(e i 9 g
B ¥
¥ fs ¥ Lvim
B' ~patch
s
G Z
x~J t ~T
[CLS]
U =
stop grad B E“:
¥ fe as :
patch
Ug
Z e[MASK] online tokenizer ' H
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* Image-BERT Pretraining with online tokenizer (IBOT) [Zhou et al., 2022]

* IBOT shows strong performance on linear probing as well as fine-tuning

* |IBOT demonstrates high transferability on various downstream tasks such as semi-
supervised learning, unsupervised learning, object detection, and segmentation

Table 4: Semi-supervised learning on
ImageNet-1K. 1% and 10% denotes label
fraction. SD denotes self-distillation.

Method Arch. 1%  10%
SimCLRv2 RNS50 579 68.1
BYOL RN50 532 68.8
SwAV RN50 539 70.2
SimCLRv2+SD  RNS50 60.0 70.5
DINO ViT-S/16  60.3 743
1IBOT ViT-S/16 61.9 75.1

Table 5: Unsupervised learning on ImageNet-
1K. T denotes k-means clustering on frozen fea-

tures.

Method  Arch. ACC ARI NMI EMI
Self-label’ RNS50 305 162 754 -
InfoMinT RN50 33.2 14.7 68.8 -
SCAN RNS50 399 275 72.0 -
DINO ViT-S/16 41.4 29.8 76.8 32.8
iBOT ViT-S/16 43.4 32.8 78.6 35.6

Table 6: Object detection (Det.) & instance segmentation (ISeg.) on COCO and Semantic
segmentation (Seg.) on ADE20K. We report the results of ViT-S/16 (left) and ViT-B/16 (right).

Seg.! denotes using a linear head for semantic segmentation.

Method Arch. Param. Det. ISeg. Seg. Method Det. ISeg. Seg.f Seg.

AP® AP™ mloU AP®> AP™ mloU mloU
Sup Swin-T 29 48.1 41.7 445 Sup 49.8 $3.2 354 16.6
MoBY Swin-T 29 48.1 415 44.1 BEiT 50.1 435 27.4 45.8
Sup. VIT-S/16 21 16.2 40.1 44.5 DINO 50.1 434 34.5 46.8
iBOT ViT-S/16 21 494 42.6 454 iBOT 51.2 442 383 50.0
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Evaluation



How to evaluate?

Most standard way:
1. Use the pretrained network from self-supervised learning

2. Use some amount of labeled data for the downstream task Measure
performance

54



How to use the labeled data?

Il

Q

€ — — —

Fine-tune all layers

-

Linear classifier

KNN

Il



How to evaluate a self-supervised learning method?

feature
:> self-supervised :> extractor
learning (e.g., a
convnet)
lots of
unlabele ]
d data . | 90°
—
conv fc

1. Learn good feature extractors from
self-supervised pretext tasks, e.g.,
predicting image rotations



How to evaluate a self-supervised learning method?

feature
self-supervised extractor supervised evaluate on the
:> learning :> (e.g., a = learning :>{ target task J
convnet
lots of vnet) ﬁ e.g. classification, detection

unlabele ]

d data o
» SR A
smaII amount

- of labeled data =

m on the target conv linear
task classifier
1. Learn good feature extractors from 2. Attach a shallow network on the
self-supervised pretext tasks, e.g., feature extractor; train the shallow
predicting image rotations network on the target task with small

amount of labeled data



Are the models useful without any labeled data?

DINO - Caron et al., 2022



Large
Language

Vision - Language GAP
Models

 Self-supervised learning allows representation learning at
scale

* Masked auto-encoders as a step toward scalable vision
learners

* Still need to close the gap with large language models
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CLIP: Contrastive Language-Image Pre-training

- Contrastive learning between image and natural language sentences

1. Contrastive pre-training

T

— I ;T

— I, T

Image T I.T
Encoder 3 31
— Iy In'Ty

I,T,

Iy T,

I3 T,

Iy,

I1 AT3

Iy T3

I3Ts

InTs

Iy-Ty

2. Create dataset classifier from label text

3. Use for zero-shot prediction

CLIP (Contrastive Language—Image Pre-training) Radford et al.,

2021



CLIP: Contrastive Language-Image Pre-training

- Contrastive learning between image and natural language sentences

E - - | |
] | Contrastive loss:

o A IS I Each image predicts
which caption
— I 1.7 I,-T; | 1 T3 I, Ty
matches
—— I2 I2 T; I2-T2 I2 T3 12 TN
EInrzsgsr — Taily | Izl | I3 Ty

Large-scale training on
400M (image, text)
pairs from the
internet

IN IN'T7 IN'TZ IN'TS IN'TN

Radford et al, “Learning Transferable Visual Models form Natural Language Supervision”, ICML 2021
Jia et al, “Scaling up Visual and Vision-Language Representation Learning with Noisy Text Supervision”, ICLR 2021



CLIP: Contrastive Language-Image Pre-training

CLIP [Radford et al., 2020]

* Simple contrastive learning between image and text embeddings

* Trained on large-scale web image-text pairs

- Tj)

exp(l; - T; exp(/; -
Levip = — == Z log p( ) ON Z 10% (

plane —
o on \‘ car —
epper the
Text
aussie pup ——

(1) Contrastive pre-training (2) Create dataset classifier from label text

?’

A phot £
D — " P ect "
a {object}.
T T, Ty TN o
bir —
—> L LT, I'T, LTy LTy
(3) Use for zero-shot prediction
—> L LT, LT, I,Ty LTy )
Image ) . . .
Encoder e e 13 I3 T1 I3 T2 I3 T3 I3 TN
| Image
; g : : : : Encoder

—> IN IN'T1 IN T2 IN'T3 IN‘TN

2_1 exp(I; - T;)

D

—>‘11

v A ) 4 ) 4
T, 15 T, TN
LTy | 1Ty | 1Ty I;' Ty

Y

A photo of
a dog.
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CLIP: Contrastive Language-Image Pre-training

CLIP [Radford et al., 2020]

e Zero-shot transfer
* Transfer learning without seeing the images or labels
* Prompt Engineering: "A photo of a [MASK]”
* Choose class that maximizes similarity with respect to image

Language enables zero- shot classification: Classify images
into categories without any additional training data!

(1) Contrastive pre-training (2) Create dataset classifier from label text

Pepper the \\\\\\\\\\\\\§w car [—
Text
aussie pup —— Text

4

Y

Encoder dog A photo of >
| i a {object}. Encoder
T, T, T, T, : :
& i [l  o—
—> I LT, 1T, 1T, 1Ty
(3) Use for zero-shot prediction v i v A
—> 1 LT, LT, LT, LTy
T, T, T5 Ty
Image ) ] ) )
Encoder L LT, LT, 11l I Ty
Image I LTy | I;-T, T
; : E 5 5 : Encoder | 2| ! A2 s 1IN
> Iy T T, T, LTy Y

A photo of
a dog.

O
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CLIP: Contrastive Language-Image Pre-training

CLIP [Radford et al., 2020]

e Zero-shot transfer
* Transfer learning without seeing the images or labels
* Prompt Engineering: "A photo of a [MASK]”
* Choose class that maximizes similarity with respect to image

Food101 SUN397

correct label g correct rank: 1/101  correct probability: 90.15% correct label: Lelevision studio correct rank: 1/397  correct probability: 90.22%

photo of ceviche, a type of food.

photo of a podium indoor.
photo of edamame, a type of food phaoto of a conference room
a photo of a lecture room

a photo of tuna tartare, a type of food

a photo of hummus, a type of food a photo of a control room.

20 a0 60 80 100 0 20 a0 60 80 100
PatchCamelyon (PCam) ImageNet-A (Adversarial)

correct label: healthy lymph node tissue  correct rank: 2/2  correct probability: 22.81%

correct label: lynx correct rank: 5/200  correct probability: 4.18%
o -

tissue

o of a mongoose.

oto of healthy lymph node tissue

hoto of & skunk.

hoto of a red fox.

photo of a lynx

Camera Name 30.011nt 37F @

o 20 a0 60 80 100 0 20 a0 60 80 100

Youtube-BB

correct label(s): airplane, person correct rank: 1/23  correct probability: 88.98%

b photo of a bird

b pholo of a bear

 photo of a giratfe

a photo of a car.

CIFAR-10
correct label: bird correct rank: 1/10

correct probability: 40.86%

100

hoto of a frog.

hoto of a dog
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CLIP: Contrastive Language-Image Pre-training

Linear probe average over all 27 datasets

L/14@336pX
B 1ay K
Very strong performance on RN50x64
many downstream vision 11, RNS0xLE
pr0b|emS! 80 12:a75, S0

Average Score (%)

~
Ul

Performance continues to _ e

improve with larger models 5045 /Y\L B
res50x1 )

. v/»/'w\"_"mszm

MoCo-v2e
—— CLIP-VIiT Instagram-pretrained  —— VIiT (ImageNet-21k) 70
—/= CLIP-ResNet — SimCLRv2 —&— BiT-M
—#— EfficientNet-NoisyStudent —r— BYOL —¥— BIT-S
—— EfficientNet —e— MoCo ResNet

100 1.0% 102
Forward-pass GFLOPs/image
Radford et al, “Learning Transferable Visual Models form Natural Language Supervision”, ICML 2021



CLIP: Contrastive Language-Image Pre-training

CLIP [Radford et al., 2020]

* A zero-shot CLIP classifier shows a competitive performance with a fully supervised linear classifier
fitted on ResNet-50 features

* Linear-probing with CLIP image features outperform the best ImageNet model

StanfordCars +28.9 SST2 +23.6
Country211 +23.2 Country211 +22.7

Food1l01 +22.5 HatefulMemes
Kinetics700 StanfordCars
SST2 - . GTSRB

SUN397 .8 SUN397 .

UCF101 .7 Kinetics700 .

HatefulMemes 7 RESISCA45 1

CIFAR10 FER2013
CIFAR100 0 Food1l01
STL1O .0 FGVCAircraft .
FER2013 .8 UCF101 +3.1
Caltech101 .0 KITTI Distance +2.3
ImageNet .9 Birdsnap .
OxfordPets ||+ 1.1 Flowers102 +1.4

+0.5 Caltech1l01 +1.3
Birdsnap EuroSAT i|+0.9
MNIST MNIST j|+0.6
FGVCAircraft DTD |J+0.5

RESISC45 VOC2007 j|+0.5
Flowers102 STL10]+0.0
DTD -0.5 ) OxfordPets
CLEVRCounts -0.8| CIFAR10
GTSRB -1.2 PatchCamelyon
PatchCamelyon -1.7 CIFAR100O
KITTI Distance -2.4 CLEVRCounts
EuroSl‘uAT . . . : —3I.O Imaqe!\let . . . .
—40 —30 —20 -—-10 0 10 20 30 40 —10 -5 Q 5 10 15 20 25
A Score (%) A Score (%)
Zero-Shot CLIP vs. Linear Probe on ResNet50 Logistic Regression on CLIP vs. EfficientNet L2 NS
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CLIP: Contrastive Language-Image Pre-training

CLIP [Radford et al., 2020]

e Zero-shot CLIP classifier is more robust to natural distributional shift

* Interestingly, [lIharco et al., 2021] show that CLIP have high effective robustness even at small scale

ImageNet Zero-Shot
100 = Dataset Examples ResNet101 CLIP A Score
— — Ideal robust model (y = x) » & . - S _ =

, ST
95 1 @ Zero-ShotCLIP e |

@® Standard ImageNet training -
901 o

o,
Exisiting robustness techniques == ImageNet 76.2 76.2 0%
85 A1

80 A

75 ImageNetV2 64.3 70.1 +5.8%

70 A

65 1~
60 -
55 4

ImageNet-R 37.7 88.9 +51.2%

50 A

ObjectNet 32.6 72.3 +39.7%

45 ~

B

40

35
30 A

25.2 60.2 +35.0%

Average on 7 natural distribution shift datasets (top-1, %)

ImageNet ( 7 Ihe=—t
Sketch =/ e

25
20

2.7 771 +74.4%

ImageNet-A [1&[F

T T T S
65 70 75 80 85 90 5 100
Average on class subsampled ImageNet (top-1, %)
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CLIP: Contrastive Language-Image Pre-training

CLIP [Radford et al., 2020]

e Zero-shot CLIP classifier is more robust to natural distributional shift

* Interestingly, [lIharco et al., 2021] show that CLIP have high effective robustness even at small scale

* Few-shot CLIP classifier also shows high effective robustness, but less than zero- shot CLIP classifier

754

Average on 7 natural distribution shift datasets (top-1, %)

70

65 A

60 -

551

50 4

40 1

35 A

45 1~

J
1 shot

.
16 shot

8 shot e

4 shot ®

7o == |deal robust model (y = x)
® [ ® Few-Shot CLIP (best model)
Zero-Shot CLIP (best model)
&7 ® Standard ImageNet training
® Robustness intervention

® Trained with more data

65

70

75 80 85 90 95
Average on class subsampled ImageNet (top-1, %)

173



CLIP: Contrastive Language-Image Pre-training
- Scaling Up dataset size for improved CLIP

Follow-up studies showed scaling dataset size improves performance

e CLIP uses carefully filtered 400M image-text pairs from web

* ALIGN [Jia et al., 2020] collected noisy 1.8B image-text pairs to scale CLIP

* BASIC [Pham et al., 2021] used 6.6B image-text pairs with bigger model size

_ — Ideal robustness (y=x)

0T s ZS logistic fit
:\3 == Non-ZS logistic fit o’
= * BASIC "o
& 807 ALIGN/CLIP 1 i
Nat ® Non-ZS models ,//
: “a
7] ® o
% 701 ‘ @ ‘ Vi
< [ 4 A
£
- g WY
< 60 - pid o1
B b o
2 pa| % o® &
._g 50 - .il
© [ J
5 >
€ 40 o
[T9) ® -,
g o
g)D i ® ® # @
o 30 (]
s P L o ‘* ®
Iz s ce® ,;T
p0ie® 2-7 : : | . .
60 65 70 7% 80 85 90

0
ImageNet (top-1, %) 174



CLIP: Contrastive Language-Image Pre-training

- Limitation

https://cdn.openai.com/papers/dall-e-2.pdf

iPod
library
pizza

toaster

‘ dough

0.4%
0.0%
0.0%
0.0%
0.1%

Granny Smith

library

pizza

j toaster
‘ dough

0.1%

0.0%
0.0%
0.0%
0.0%
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Segment Anything Models (SAM)

Segment Anything Model (SAM) [Kirillov et al., 2023]
» A foundation model for image segmentation, i.e., predicting object masks
* SA-1B dataset
e Web-scale 11M photography and 1.1B segmentation masks?

* Enables strong zero-shot transfer on new domains
* e.g., segmenting underwater scenes, or microscopy

SA-1B examples

Zero-shot transfer with SAM
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Segment Anything Models (SAM)

Segment Anything Model (SAM) [Kirillov et al., 2023]
* Promptable Segmentation via points and boxes
* User can steer the image segmentation, like prompting MLs

* For example, user can prompt regions to be included & excluded by the model
* Segmenting the whole image can be done by prompting a grid of points

Prompt-based Segmenting the whole image by
Image Segmentation by SAM prompting a grid of points
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valid mask

validTmask ‘ |—> annotate —l

lightweight mask decoder model data

| T | T7 train 4—,

model
S A IVI A image Segment Anything 1B (SA-1B):

encoder
o~ — P— * 1+ billion masks
. @ cat with encoder °1 1. million imag.cs i kisiaieg
e black ears * privacy respecting
T ) T * licensed images
segmentation prompt image prompt image
(a) Task: promptable segmentation (b) Model: Segment Anything Model (SAM) (c) Data: data engine (top) & dataset (bottom)

, score
L]
. [] C) - mask decoder !—
image | . 1 T T /
encoder - i
H /c—o;'\ prompt encoder
. image t 1 t , Score
image embedding mask  points  box text

valid masks

https://segment-anything.com/
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Segment Anything Models (SAM)

Component of SAM model
* Image Encoder
* A ViT model producing a one-time embedding for segmentation
« The embedding can be shared for different prompts
* Prompt Encoder
 Encodes point, box, or text! prompts into transformer tokens

* Mask Decoder
* Prompt token and image embedding goes through a transformer decoder

* Decoder predicts multiple candidates for segmentation mask and the confidence

valid masks

2 ‘
. ig ‘+conf|dence
; ( ~ score
i ( > s lightweight _
image -
= encoder 4 mask decoder ‘ g(+°°”f'dence

score

T T T w . confidence
) |5 q Score
image prompt encoder

embeddings

/ \ 1
/ down \ (xyfg/bg)
/ sample \

(x1,y1),(x2y2)
T [

mask points  box text

Note: Text encoding function is not published. 182



Segment Anything Models (SAM)

SA-1B dataset
* Web-scale 11M photography and 1.1B segmentation masks
e Challenge: manually annotating the images is too expensive

* Model-in-the-loop design
1. The data annotators use and fix SAM’s outputs to annotate images (semi- auto)

2. Newley available annotations are then used to re-train SAM
3. The process is repeated and SAM’s performance is bootstrapped

* Finally, the automatic annotator (a SAM) creates the SA-1B dataset

I—) annotate ﬁ
model data
L train (—l Y 4 p—— \ .
. Data 5
Segment Anything 1B (SA-1B):
: 1+ billi()l’l maSkS 7 ‘."" T’ﬁ“ iili?::: f:;,.-;;, ;.,,;,.;,1:5‘E"»A'”‘::i;v’
+ 11 million images SNSRI SSIN"

* privacy respecting |
. o I
* licensed images

Model-in-the-loop process is repeated +10 times to get the final automatic annotation
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Segment Anything Models (SAM)

SAM model variants
» Default variants by the original research paper

* Considers different image enocders: ViT-B, ViT-L, ViT-H
* A direct trade-off on performance vs. computation cost

~
o

mloU (23 datasets)
(o))
V)]

(o)
(]

91M 308M 636M
ViT-B ViT-L ViT-H
Number of parameters

Original
Image
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Segment Anything Models (SAM)

SAM model variants

» Default variants by the original research paper

* More effective way for the efficiency?

mloU (23 datasets)

3
)

N
W

D
]

* Considers different image enocders: ViT-B, ViT-L, ViT-H

A trivial trade-off on segmentation accuracy vs. computation cost

91M
ViT-B

308M
ViT-L
Number of parameters

636M
ViT-H

Original
Image
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Segment Anything Models (SAM)

FastSAM [Zhao et al., 2023]

* Trains SA-1B on a CNN-based architecture for image segmentation (YoLo v7)

* Predicts all possible masks at once, without conditioning on prompts
(+) Better parallization on the GPUs (Running time is independent to the number of points)

(—) Does not learn to utilize user prompts, e.g., points, boxes

CNN

Backbone

FPN

-1 Mask Coeff. :
o EEn

Detect Branch

[ l—w Mask Coeff.
—

Detect

P4 Mask Coeff.

o Detect
% I_’ Mask Coeff.
4 Detect
ProtoNet
| Threshold
Mask Branch |

1 %+0,0137 %—0.0342 %+0.6846 %

YolLo architecture predicts all image segmentations at once

Running Speed under Different Point Prompt Numbers (ms)

method params 1 10 100 E(16x16) E(32x32*) E(64x64)
SAM-H [20] 0.6G 446 464 627 852 2099 6972
SAM-B [20] 136M 110 125 230 432 1383 5417
FastSAM (Ours) | 68M 40
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Segment Anything Models (SAM)

MobileSAM [Zhang et al., 2023]
* Downsizing the image encoder through Knowledge Distillation [Hinton et al., 2015]

* Parameters: 611M (ViT-H) = 5M (tiny transformer)

* Image embedding space tends to be similar after knowledge distillation

e Can perform well close to the original SAM
* Realtime inference 452ms (Original SAM) — 8ms (MobileSAM)

Finetuning (optional)

prompt-guided

ViT-based (large)
e T e s mask
image encoder mask decoder
icopy
v
ViT-based Il -gui
iT-based (small) prompt-guided ;| mask

image encoder mask decoder

Image encoder is distillated, with a frozen mask decoder

(a) Image (b) MobileSAM (c) Original SAM
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Segment Anything Models (SAM)

SAM-HQ [Ke et al., 2023]
 |dentifies the weakness of SAM and SA-1B dataset
* Failures on objects with intricate structures (e.g., grate patterns)

SAM has weakness on intricate structures, which gets fixed by HQ-SAM [Ke et al., 2023]
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Segment Anything Models (SAM)

SAM-HQ [Ke et al., 2023]
* SAM-HQ introduces fine-tuning to mitigate the failure cases (HQSeg-44K dataset)

e Custom collection of 44K images, with extremely intricate segmentation annotations

saM M
Prediction " |

HQ-SAM [
Prediction M98

SAM vs. HQ-SAM on HQSeqg-44k samples
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Segment Anything Models (SAM)

SAM-HQ [Ke et al., 2023]

* The pretrained SAM parameters remain frozen

* Prevents model overfitting or catastrophic forgetting by a small HQSeg-44K dataset

 SAM-HQ only introduces a tunable prompt token and MLPs for fusion

* Requires training only 5.1M additional parameters (0.5% of the SAM’s parameters)

® Point-wise Product

SAM

Tmage Encoder 64X64 (; TraCnOsI}:ssed Mask feat.
————————— 5 -
5 Output
: Prompt Token t Token to ng; l
I NigenX256) ; = image attn. i
1
1 MLP 1
: Output Token : Mask Decoder :
‘Q-SAM : + : Updated :
i| HQ-Output (! |nrick Feat. HQ-Output 1
: Token : Token :
) =t | Emor
ViT Feat. MLP ICorrection
Early Layer - i I
X Global-local HQ-Feature: v
“ | Final Laver,|  pygsion 256256
HQ-SAM architecture
Method Training Inference
Learnable Params (M) # GPU Batch Size Time (h) | FPS Mem.
SAM [21] 1191 128 128 N/A 5.0 7.6G
HQ-SAM 5.1 8 32 4 4.8 7.6G

Training cost of HQ-SAM
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Segment Anything Models (SAM)

SAM-HQ [Ke et al., 2023]
* The pretrained SAM parameters remain frozen

* Prevents model overfitting or catastrophic forgetting by a small HQSeg-44K dataset

 SAM-HQ only introduces a tunable prompt token and MLPs for fusion
* Brings simple and effective performance boosts on all existing SAM variants
* Including VIT-H, ViT-L, ViT-B and MobileSAM [Zhang et al., 2023]

HQ-SAM—
HQ-SAM
50 1 (VIT-L) £ (ViT-H)

/| SAM < )
SAM
T Q (ViT-H)
HQ-SAM
47 .5 (ViT-B)

Light HQ-SAM

TinyViT,
(TinyViT) SAM

45-

MobileSAM
(TinyViT)

Zero-shot COCO AP

42.51

40

0 50 500 1500 3000
Model Size [M]

Zero-shot performances on MS-COCO
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Segment Anything Models (SAM)

Notable Applications of SAM

* Open-Vocabulary Semantic Segmentation (e.g., Grounded SAM [Liu et al., 2023])
Basic Idea: prompting SAM with boxes, via text-prompted box predictors

* Recent vision-language models can make zero-shot box predictions at ease
e.g., GroundingDINO [Liu et al., 2023], ViLD [Gu et al., 2022]

* However, zero-shot semantic segmentation has remained challenging

e SAM directly escalates the semantic box predictions = segmentation masks
® A break-through in the zero-shot, open vocabulary, semantic segmentation task

Text Prompt: Grounding DINO: Grounded-SAM:
“Horse. Clouds. Grasses. Sky. Hill.” Detect Everything Detect and Segment Everything
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Segment Anything Models (SAM)

Conclusion

Segment Anything Model, a foundation model in Vision Al
* Trained on a web-scale dataset of 11M images & 1B+ masks
* Adaptable to wide range of image domains & tasks via user prompts

Foundation Model = scale & flexibility

Input Segment Parts Novel V|ew

Input Segment Parts Novel View

=)

SA-1B Anything 3D [NUS team, 2023]

195



Table of Contents

1.

Problem

Introduction
 Foundation models in vision tasks

Self-supervised Learning
e Discriminative Visual Foundation Models

m Contrastive learning [SimCLR, MoCo, ...]
m Self Distillation[BYOL, DINO, ...]

e Generative Visual foundation models
m Mask Auto-Encoder [MAE]

e Evaluation

Multi-Modal Self-supervised Learning [CLIP]
® |mage-text Contrastive Learning

Segment Anything [SAM]

Conclusion

196




Foundation Models?

Pretrain

Self-supervised

Contrastive

(Fine=tune)

A
) N
«)

Downstream
Task

Image Foundation Models

> Encose

-
’ P
'
» Image
p oo

CLIP

DINO v2

Tt O
EEEEN
o [ )]
- ENEEN
EENEN
\
EENENI S

MAE

197



Foundational Models in Computer Vision

https://arxiv.ora/pdf/2307.13721.pdf
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Domain gap...

*For example, open source SSL models is pre-trained on natural
looking images: )

*But, your data looks like this:

Solution: Fine-tune SSL pretralned model usmg on your data
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Videos

Tremendous videos and media contents can be obtained from:

Surveillance
Camera

Video understanding is an important research topic. 500



Build VFM on the top of IFM
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Build VFM by learning from scratch with MAE

Time Time Time Time
d 4 4 A ==
g —~ e — o e T - ot —
PP PP ‘& ®m
A R

e >

Downsampled video clip  Tube masking with an extremely high ratio L. . M Target video clip
keeping masking
VideoMAE ST-MAE
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Video Foundation Models

Unmasked Teacher: Towards Training-Efficient Video Foundation Models
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Downstream Tasks

Action 1. Action Recognition
. 2.  Temporal Action Localization
UnderStandlng 3. Spatiotemporal Action Localization
AA
1. Video Retrieval Video Language
2. Video Question Answering .
3. Visual Language Navigation Allgﬂment
Aa
Video Open 1. Zero-shot Action Recognition
. 2.  Zero-shot Multiple Choice
Understandmg 3. Open-set Action Recognition
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