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Problem

1. Question: How can you detect an object, such as a "car," in an 
image using object detection techniques? 

Key Steps to build Model [A-Z]:

1. Collect Data – Gather images containing objects of interest.

2. Label the Data – Annotate images with bounding boxes or 
masks.

3. Train the Model – Use deep learning techniques (e.g., 
CNNs) to learn object features.

4. Test the Model – Validate your trained model.
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Problem

1. Question: How can you detect an object, such as a "car," in an 
image using object detection techniques?

1. High costs, Time consuming, Annotation errors and scalability issues 
7



Problem: Supervised Learning is Expensive!

Assume you want to label 1M images. How much will it cost?
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Problem: Supervised Learning is Expensive!

Assume you want to label 1M images. How much will it cost?

(1,000,000 images)

⨉ (10 seconds/image)

⨉ (1/3600 hours/second)

⨉ ($15 / hour)

(Small to medium sized dataset) 

(Fast annotation)

(Low wage paid to 
annotator)
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Problem: Supervised Learning is Expensive!

Assume you want to label 1M images. How much will it cost?

(1,000,000 images)

⨉ (10 seconds/image)

⨉ (1/3600 hours/second)

⨉ ($15 / hour)

= $41,667

(Small to medium sized dataset) 

(Fast annotation)

(Low wage paid to 
annotator)

(Other assumptions: one annotator per image, no benefits / payroll tax / crowdsourcing fee 
for annotators; not accounting for time to set up tasks for annotators, etc. Real costs could 
easily be 3x this or more)
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Problem: Supervised Learning is Expensive!

Assume you want to label 1B images. How much will it 
cost?

(1,000,000,000 images)

⨉ (10 seconds/image)

⨉ (1/3600 hours/second)

⨉ ($15 / hour)

= $41,666,667

(Large dataset) 

(Fast 

annotation)

(Low wage paid to 
annotator)

(Other assumptions: one annotator per image, no benefits / payroll tax / crowdsourcing fee 
for annotators; not accounting for time to set up tasks for annotators, etc. Real costs could 
easily be 3x this or more)
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Problem

2. Question: How would you detect other objects, such as "person" ?

● What steps would you follow?
● Can the same model be used for both objects?

2. Generalization Challenge 12



Problem: Supervised Learning is Not How We Learn

Baby image is CC0 public domain

Babies don’t get supervision 
for everything they see!
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Solution: Self-Supervised Learning

Lets build methods that learn from ”raw” data – :
1. No annotations required.
2. Can Generalize well.

Unsupervised Learning: Model isn’t told what to predict. Older 
terminology, not used as much today.

Self-Supervised Learning: Model is trained to predict some 
naturally- occurring signal in the raw data rather than human 
annotations.
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• Foundation Models for Vision
• Is a pre-trained deep neural network that forms the backbone for various downstream tasks.

• Fixing a foundation model (e.g., trained via self-supervised learning) and only adapting a simple 
task-specific model is sufficient for many problems

Introduction
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Self-Supervised Representation Learning

[Devlin et al, NAACL 2019] [Brown et al, NeurIPS 2020]

•Scalable: train huge models on unlimited data and not worry about overfitting

Language

21



• Foundation Models for Vision

• Fixing a foundation model (e.g., trained via self-supervised learning) and only adapting a simple 

task-specific model is sufficient for many problems

• This lecture will cover following foundation models for vision

• Discriminative and generative models (e.g., self-supervised models, CLIP)

CLIP [Radford et al., ‘21] MAE [He et al., ‘21]
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• Foundation Models for Vision

• Fixing a foundation model (e.g., trained via self-supervised learning) and only adapting a simple 

task-specific model is sufficient for many problems

• This lecture will cover following foundation models for vision

• Discriminative and generative models (e.g., self-supervised models, CLIP)

• Vision-specific models (e.g., Segment Anything (SAM),

Segment Anything [Meta AI, ‘22]
23



• Foundation Models for Vision

• Fixing a foundation model (e.g., trained via self-supervised learning) and only adapting a simple 

task-specific model is sufficient for many problems

• This lecture will cover following foundation models for vision

• Discriminative and generative models (e.g., self-supervised models, CLIP)

• Vision-specific models (e.g., Segment Anything (SAM)

• In specific, this lecture will answer (or at least hint) to the following questions:

• How to train foundation models?

• What are the zero-shot capabilities of foundation models?

• How to exploit foundation models on specific tasks?
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We are interested in visual representations that extract high-level semantics which can be applied to 

various downstream tasks such as

• Supervised learning (e.g., classification, detection)

• Unsupervised learning (e.g., clustering, metric learning)

• Modular component for multimodal understanding (e.g., image-text retrieval, visual question answering)

Scaling model and data size is key recipe in training foundation models:

• The loss function must be designed to be scalable and stable

• The data should be curated to remove bias or noisy label

• Computation efficiency to lower the training cost

Discriminative Visual Foundation Models: Overview
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Introduce self-supervised learning (SSL) methods:

• Discriminative Visual Foundation Models 

○ Invariance based methods such as contrastive learning (CLIP, DINO)

• Generative Visual Foundation Models

○ Masked image modeling (MIM)

Self-supervised learning: Overview

27



Recall: Supervised vs Unsupervised Learning
Supervised Learning                                 Unsupervised 
Learning

Data: (x, y)

x is data, y is label

Goal: Learn a function to map x -> 
y

Examples: Classification, regression, 
object detection, semantic 
segmentation, image captioning, etc.

Data: x

Just data, no labels!

Goal: Learn some underlying 
hidden structure of the data

Examples: Clustering, 
dimensionality reduction, feature 
learning, density estimation, etc.
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Encoder:
ф

Decoder:


Input Image: x Features: ф x Prediction: y

Loss:
L y, y

Self-Supervised Learning: Pretext then Transfer

Step 1: Pretrain 
a network on a 
pretext task that 
doesn’t require 
supervision
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Encoder:
ф

Decoder:


Input Image: x Features: ф x Prediction: y

Loss:
L y, y

Step 2: 
Transfer 
encoder to 
downstream 
tasks via linear 
classifiers, KNN, 
finetuning

Self-Supervised Learning: Pretext then Transfer

Encoder:
ф

Input Image: x Features: ф x

Downstream tasks: 
Image classification, 
object detection, 
semantic 
segmentation

Step 1: Pretrain 
a network on a 
pretext task that 
doesn’t require 
supervision
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Encoder:
ф

Decoder:


Input Image: x Features: ф x Prediction: y

Loss:
L y, y

Step 1: Pretrain 
a network on a 
pretext task that 
doesn’t require 
supervision

Step 2: 
Transfer 
encoder to 
downstream 
tasks via linear 
classifiers, KNN, 
finetuning

Self-Supervised Learning: Pretext then Transfer

Encoder:
ф

Input Image: x Features: ф x

Goal: Pretrain + 
Transfer does better 
than supervised 
pretraining, and better 
than directly training on 
downstream
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Self-Supervised Learning: Pretext Tasks

Generative: Predict 
part of the input signal

• Autoencoders 
(sparse, denoising, 
masked)

• Autoregressive

• GANs

• Colorization

• Inpainting

Multimodal: Use some 
additional signal in 
addition to RGB images

• Video
• 3D

• Sound

• Language

Discriminative: 
Predict something 
about the input signal

• Context prediction
• Rotation

• Clustering

• Contrastive

32



Self-Supervised Paradigms in Vision

• Contrastive / Siamese

x′
x

x′′

• Compare data points in the latent representation 
space

• Computer vision: SimCLR, MoCo, BYOL, DINO, 
…, with augmentations

[Chen et al, ICML 2020] [He et al, CVPR 2020] [Grill et al, NeurIPS 2020] [Caron et al, NeurIPS 2020]

• Reconstructive / Auto-Encoding

• Reconstruct corrupted data points

• Grounded in the input space

• Paradigm of BERT & GPT in NLP

• Computer Vision: MAE

x


x
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Self-Supervised Paradigms in Vision

• “Contrastive + Reconstructive” is also possible

[Zhou et al, ICLR 2022] [Li et al, CVPR 2023]

x′

x′′

contrastive

• Multi-tasking makes representations more versatile: iBOT, MAGE

• But the pipeline is less clean to understand scientifically

x
x

x
reconstructiv
e
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Contrastive Learning
Assume we don’t have labels for images, but we know whether some pairs 
of images are similar or dissimilar

Hadsell et al, “Dimensionality Reduction by Learning and Invariant Mapping”, CVPR 2006 White kitten image is free for commercial use under the Pixabay license
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Contrastive Learning
Assume we don’t have labels for images, but we know whether some 
pairs of images are similar or dissimilar

Similar images should have similar features

CNN

CNN

Hadsell et al, “Dimensionality Reduction by Learning and Invariant Mapping”, CVPR 2006 White kitten image is free for commercial use under the Pixabay license
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Contrastive Learning
Assume we don’t have labels for images, but we know whether 
some pairs of images are similar or dissimilar

CNN

CNN

Similar images should have similar features

CNN

CNN

Hadsell et al, “Dimensionality Reduction by Learning and Invariant Mapping”, CVPR 2006 White kitten image is free for commercial use under the Pixabay license

Dissimilar images should have dissimilar features
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Contrastive Learning

CNN CNN

Assume we don’t have labels for images, but we know whether some pairs 
of images are similar or dissimilar

Let d =          ф  x
1    

− ф  x
2 2 

be the Euclidean distance between features for two images

Similar images should have similar features    Dissimilar images should have dissimilar features

CNN    CNN

Hadsell et al, “Dimensionality Reduction by Learning and Invariant Mapping”, CVPR 2006 White kitten image is free for commercial use under the Pixabay license
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Contrastive Learning
Assume we don’t have labels for images, but we know whether some pairs 
of images are similar or dissimilar

Let d =           ф x
1    

− ф x
2 2 

be the Euclidean distance between features for two images

Similar images should have similar features    Dissimilar images should have dissimilar features

CNN CNN

L
S

x
1
, x

2
= d2

Pull features together

CNN CNN

Hadsell et al, “Dimensionality Reduction by Learning and Invariant Mapping”, CVPR 2006 White kitten image is free for commercial use under the Pixabay license
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Contrastive Learning
Assume we don’t have labels for images, but we know whether some pairs 
of images are similar or dissimilar

Let d =          ф   x
1   

− ф x
2 2 

be the Euclidean distance between features for two images

Similar images should have similar features     Dissimilar images should have dissimilar features

CNN CNN

L
S

x
1
, x

2
= d2

Pull features together

CNN CNN

L
D    

x
1
, x

2
= max 0, m − d

Hadsell et al, “Dimensionality Reduction by Learning and Invariant Mapping”, CVPR 2006 White kitten image is free for commercial use under the Pixabay license

2

Push features apart 
(up to margin m)
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Core idea of invariance-based learning:

• Invariance: Representations of related samples should be similar

• Contrast (optional): Representations of unrelated samples should be dissimilar

Positive pair

Negative pair

SSL via Invariance

After 
learning

42



Core idea of invariance-based learning:

• Invariance: Representations of related samples should be similar

• Contrast (optional): Representations of unrelated samples should be dissimilar

Positive pair

Negative pair

• Q) How to construct positive/negative pairs in the unsupervised setting?

• A) Positive samples are constructed from
• Similar samples (e.g., in the same cluster)

• Same instance of different data augmentation
• Additional structures (e.g., multi-view images, video) (negative samples = not 

positive samples)
Algorithmic Intelligence Lab

SSL via Invariance

Problem: Where to get 
positive and negative 
pairs?
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Given both similar (“positive”) and dissimilar (“negative”) candidates, to identify 
which ones are similar to the anchor data point is a classification task.

There are ways to construct a set of data point candidates:
1. The original input and its distorted version
2. Data that captures the same target from different views

Contrastive Learning Loss: Inter-Sample Classification

44



3.1.1 Data Augmentation

45



Data augmentation setup is critical for learning good embedding.

It introduces the non-essential variations into examples without modifying semantic 
meanings and thus encourages the model to learn the essential part within the 
representation.

● Image augmentation
● Text augmentation

Techniques: Data Augmentation

46



● Basic Image Augmentation
○ Random crop
○ color distortion
○ Gaussian blur
○ color jittering
○ random flip/rotation
○ etc.

● Augmentation Strategies

● Image Mixture

Techniques: Image Augmentation

47



● Basic Image Augmentation

● Augmentation Strategies
○ AutoAugment (Cubuk, et al. 2018): inspired by NAS
○ RandAugment (Cubuk et al. 2019): reduces NAS search space in AutoAugment.
○ PBA (Population based augmentation; Ho et al. 2019): evolutionary algorithm
○ UDA (Unsupervised Data Augmentation; Xie et al. 2019): minimize the KL divergence between the predicted distribution 

over an unlabelled example and its unlabelled augmented version.

● Image Mixture

Techniques: Image Augmentation

48



● Basic Image Augmentation

● Augmentation Strategies

● Image Mixture
○ Mixup (Zhang et al 2018): weighted pixel-wise combination of two images.
○ Cutmix (Yun et al 2019): mix in a local region of one image into the other.
○ MoCHi (“Mixing of Contrastive Hard Negatives”; Kalantidis et al 2020): mixture 

of hard negative samples.

Techniques: Image Augmentation

49



Hard negative samples are different to learn. They should have different labels from 
the anchor sample, but the embedding features may be very close.

Hard negative mining is important for contrastive learning.

Challenging negative samples encourages the model to learn better 
representations that can distinguish hard negatives from true positives.

Hard Negative Mining

50



Explicit hard negative mining

● MoCHi (Kalantidis et al. 2020): mine hard negative by sorting them 
according to similarity to the query in descending order.

● Extract task-specific hard negative samples from labelled datasets.
○ e.g. “contradiction” sentence pairs from NLI datasets. (Most 

sentence embedding papers)
● Keyword based retrieval

○ e.g. BM25 search results (Karpukhin et al. 2020)
● Upweight the negative sample probability to be proportional to its similarity to 

the anchor sample (Robinson et al. 2021)

Hard Negative Mining

51



Implicit hard negative mining

● In-batch negative samples
● Memory bank (Wu et al. 2018, He et al. 2019) → Increase batch size
● Large batch size via various training parallelism

Hard Negative Mining
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Contrastive Representation Learning

?

θ=?

attract

Fei-Fei Li, Jiajun 
Wu, Ruohan Gao

Lecture 14 -

May 17, 
2022

repel
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Contrastive Representation Learning

?

θ=?

reference 

positive 

negative

Fei-Fei Li, Jiajun 
Wu, Ruohan Gao

Lecture 14 -

May 17, 
2022
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A formulation of contrastive learning

What we want:

x: reference sample; x+ positive sample; x- negative sample

Given a chosen score function, we aim to learn an encoder 
function f that yields high score for positive pairs (x, x+) and 
low scores for negative pairs (x, x-).

Fei-Fei Li, Jiajun 
Wu, Ruohan Gao

Lecture 14 -

May 17, 
2022
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A formulation of contrastive learning
Loss function given 1 positive sample and N - 1 negative samples:

Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 14 - May 17, 
2022
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A formulation of contrastive learning
Loss function given 1 positive sample and N - 1 negative samples:

...

Fei-Fei Li, Jiajun 
Wu, Ruohan Gao

Lecture 14 -

May 17, 
2022
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A formulation of contrastive learning
Loss function given 1 positive sample and N - 1 negative samples:

score for the positive pair

This seems familiar …
score for the 

N-1 negative 
pairs

Fei-Fei Li, Jiajun 
Wu, Ruohan Gao

Lecture 14 -

May 17, 
2022
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A formulation of contrastive learning
Loss function given 1 positive sample and N - 1 negative samples:

score for the positive pair

This seems familiar …
score for the 

N-1 negative 
pairs

Fei-Fei Li, Jiajun 
Wu, Ruohan Gao

Lecture 14 -

May 17, 
2022

Cross entropy loss for a N-way softmax classifier!
I.e., learn to find the positive sample from the N 
samples
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A formulation of contrastive learning
Loss function given 1 positive sample and N - 1 negative samples:

Commonly known as the InfoNCE loss (van den Oord et al., 2018) A 
lower bound on the mutual information between f(x) and f(x+)

The larger the negative sample size (N), the tighter the bound
Detailed derivation: Poole et al., 2019

Fei-Fei Li, Jiajun 
Wu, Ruohan Gao

Lecture 14 -

May 17, 
2022
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3.1.2 Losses
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Common loss functions:

● Contrastive loss (Chopra et al. 2005)
● Triplet loss (Schroff et al. 2015; FaceNet)
● Lifted structured loss (Song et al. 2015)
● Multi-class n-pair loss (Sohn 2016)
● Noise contrastive estimation (“NCE”; Gutmann & Hyvarinen 2010)
● InfoNCE (van den Oord, et al. 2018)
● Soft-nearest neighbors loss (Salakhutdinov & Hinton 2007, Frosst et al. 2019)

Contrastive Learning Loss: Inter-Sample Classification
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Contrastive loss (Chopra et al. 2005): Works with labelled dataset.

Encodes data into an embedding vector:
- Examples from the same class have similar embeddings.
- Samples from different classes have different ones.

Given two labeled data pairs      and:

minimize maximize

Contrastive Learning Loss: Inter-Sample Classification
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Triplet loss (Schroff et al. 2015): learns to minimize the distance between the 
anchor x and positive x+ and maximize the distance between the anchor x and 
negative x- at the same time.

Given a triplet input ,

(Schroff et al. 
2015)

Contrastive Learning Loss: Inter-Sample Classification
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N-pair loss (Sohn 2016) generalizes triplet loss to include comparison with 
multiple negative samples.

Given one positive and N-1 negative samples,

Contrastive Learning Loss: Inter-Sample Classification
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Lifted structured loss (Song et al. 2015): utilizes all the pairwise edges within 
one training batch for better computational efficiency.

(Song et al. 
2015)

where

set of positive pairs 
set of negative 
pairs

Contrastive Learning Loss: Inter-Sample Classification
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where logit

sigmoid

Noise Contrastive Estimation (NCE) (Gutmann & Hyvarinen 2010) runs 
logistic regression to tell apart the target data from noise.

Given target sample distribution p and noise distribution q,

just cross entropy

Contrastive Learning Loss: Inter-Sample Classification
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InfoNCE (van den Oord, et al. 2018):

 uses categorical cross-entropy loss to identify the positive sample amongst a set of unrelated noise samples.

Given a context vector c, the positive sample should be drawn from the conditional distribution p(x|c), 

while N−1 negative samples are drawn from the proposal distribution p(x), independent from the context c.

The probability of detecting the positive sample correctly is:

         where the density function is

Contrastive Learning Loss: Inter-Sample Classification
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Soft-Nearest Neighbors Loss (Frosst et al. 2019) extends the loss function to 
include multiple positive samples given known labels.

Given a batch of 
samples

,

temperature 
term

Contrastive Learning Loss: Inter-Sample Classification
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3.1.3 Framework
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• Instantiations of invariance-based approach
• Many classes of self-supervised learning can be viewed as invariance-based

• Contrastive learning

• Attract similar samples and dispel dissimilar samples

• E.g., MoCo, SimCLR, CLIP

•
• Clustering & pseudo-labeling

• Cluster data into 𝐾 groups, and assume they are pseudo-labels

• Distill pseudo-labels to the self-supervised classifier (strengthen the similarity)

• E.g., DeepCluster, SwAV, DINO

• Consistency regularization

• Attract similar samples

• E.g., MixMatch, UDA, BYOL

SSL via Invariance

71



- Use a projection network g(·) to project features to a space where 
contrastive learning is applied

- Generate positive samples through data augmentation:

● random cropping, random color distortion, and random blur.

- Cosine similarity as the score function:

Source: Chen et al., 2020

Fei-Fei Li, Jiajun 
Wu, Ruohan Gao

SimCLR: A Simple Framework for Contrastive Learning
• A simple framework for contrastive learning without requiring specialized architectures or a memory bank

72



SimCLR: generating positive samples from data augmentation

Source: Chen et al., 2020

Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 14 - 73



SimCLR: mini-batch training

list of positive pairs

Each 2k and 2k + 1 
element is a positive 
pair

Fei-Fei Li, Jiajun 
Wu, Ruohan Gao

Lecture 14 -

May 17, 
2022

“Affinity matrix”
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SimCLR: mini-batch training

list of positive pairs

= classification label for each row

Each 2k and 2k + 1 
element is a positive 
pair

“Affinity matrix”

Fei-Fei Li, Jiajun 
Wu, Ruohan Gao

Lecture 14 -

May 17, 
2022
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SimCLR

Generate a positive pair 
by sampling data 
augmentation functions

Source: Chen et al., 2020

Fei-Fei Li, Jiajun 
Wu, Ruohan Gao

Lecture 14 -
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SimCLR

InfoNCE loss:
Use all non-positive 
samples in the 
batch as x -

Generate a positive pair 
by sampling data 
augmentation functions

Source: Chen et al., 2020

Fei-Fei Li, Jiajun 
Wu, Ruohan Gao

Lecture 14 -
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SimCLR

InfoNCE loss:
Use all non-positive 
samples in the 
batch as x -

Generate a positive pair 
by sampling data 
augmentation functions

Source: Chen et al., 2020

Fei-Fei Li, Jiajun 
Wu, Ruohan Gao

Lecture 14 -

Iterate through and 
use each of the 2N 
sample as reference, 
compute average loss
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Contrastive Learning with Data Augmentation

Hadsell et al, “Dimensionality Reduction by Learning and Invariant Mapping”, CVPR 2006

Wu et al, “Unsupervised Feature Learning by Non-Parametric Instance-Level Discrimination”, CVPR 2018 

Van den Oord et al, “Representation Learning with Contrastive Predictive Coding”, NeurIPS 2018

Tian et al, “Contrastive Multiview Coding”, ECCV 2020

He et al, “Momentum Contrast for Unsupervised Visual Representation Learning”, CVPR 2020 

Chen et al, “A Simple Framework for Contrastive Learning of Visual Representations”, ICML 2020

Batch of 

N images

Hjelm et al, “Learning deep representations by mutual information estimation and maximization”, ICLR 2019 
Bachman et al, “Learning Representations by Maximizing Mutual Information Across Views”, NeurIPS 2019 
Henaff et al, “Data-Efficient Image Recognition with Contrastive Predictive Coding”, ICML 2020
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Contrastive Learning with Data Augmentation
Batch of 

N images

Two augmentations 

for each image

x1
x2 

x3 

x4 

x5 

x6

Hadsell et al, “Dimensionality Reduction by Learning and Invariant Mapping”, CVPR 2006

Wu et al, “Unsupervised Feature Learning by Non-Parametric Instance-Level Discrimination”, CVPR 2018 

Van den Oord et al, “Representation Learning with Contrastive Predictive Coding”, NeurIPS 2018

Hjelm et al, “Learning deep representations by mutual information estimation and maximization”, ICLR 2019

Bachman et al, “Learning Representations by Maximizing Mutual Information Across Views”, NeurIPS 2019 

Henaff et al, “Data-Efficient Image Recognition with Contrastive Predictive Coding”, ICML 2020

Tian et al, “Contrastive Multiview Coding”, ECCV 2020

He et al, “Momentum Contrast for Unsupervised Visual Representation Learning”, CVPR 2020 

Chen et al, “A Simple Framework for Contrastive Learning of Visual Representations”, ICML 2020
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Contrastive Learning with Data Augmentation
Batch of 

N images

Two augmentations 

for each image

Extract 

features

Hadsell et al, “Dimensionality Reduction by Learning and Invariant Mapping”, CVPR 2006

Wu et al, “Unsupervised Feature Learning by Non-Parametric Instance-Level Discrimination”, CVPR 2018 

Van den Oord et al, “Representation Learning with Contrastive Predictive Coding”, NeurIPS 2018

Hjelm et al, “Learning deep representations by mutual information estimation and maximization”, ICLR 2019

Bachman et al, “Learning Representations by Maximizing Mutual Information Across Views”, NeurIPS 2019 

Henaff et al, “Data-Efficient Image Recognition with Contrastive Predictive Coding”, ICML 2020

Tian et al, “Contrastive Multiview Coding”, ECCV 2020

He et al, “Momentum Contrast for Unsupervised Visual Representation Learning”, CVPR 2020 
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Contrastive Learning with Data Augmentation
Batch of 

N images

Two augmentations 

for each image

Extract 

features

Hadsell et al, “Dimensionality Reduction by Learning and Invariant Mapping”, CVPR 2006
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Chen et al, “A Simple Framework for Contrastive Learning of Visual Representations”, ICML 2020

Each image tries to predict which 
of the other 2N-1 images came 
from the same original image
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Contrastive Learning with Data Augmentation
Batch of 

N images

Two augmentations 

for each image

Extract 

features

Each image tries to predict which 
of the other 2N-1 images came 
from the same original image

Hadsell et al, “Dimensionality Reduction by Learning and Invariant Mapping”, CVPR 2006
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Contrastive Learning with Data Augmentation
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for each image
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features

Each image tries to predict which 
of the other 2N-1 images came 
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• SimCLR [Chen et al., 2020]

• A simple framework for contrastive learning without requiring specialized architectures or a memory bank

• This paper founds that contrastive learning benefits from …
1. Strong augmentation (i.e., composition of multiple data augmentation operations)

2. A nonlinear MLP between the representation and the contrastive loss

3. Large batch sizes and longer training

* source : https://ai.googleblog.com/2020/04/advancing-self-supervised-and-semi.html  86

SimCLR: A Simple Framework for Contrastive Learning
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• SimCLR [Chen et al., 2020]

• A simple framework for contrastive learning without requiring specialized architectures or a memory bank

• This paper founds that contrastive learning benefits from …
1. Strong augmentation (i.e., composition of multiple data augmentation operations)

• Strong color distortion degrades supervised learning, but improves SimCLR

• A stronger augmentation (AutoAugment) degrades SimCLR

SimCLR: A Simple Framework for Contrastive Learning

87



• SimCLR [Chen et al., 2020]

• A simple framework for contrastive learning without requiring specialized architectures or a memory bank

• This paper founds that contrastive learning benefits from …
2. A nonlinear MLP between the representation and the contrastive loss

•

SimCLR: A Simple Framework for Contrastive Learning

Linear / non-linear projection heads improve 
representation learning.

A possible explanation:
● contrastive learning objective may discard useful 

information for downstream tasks
● representation space z is trained to be invariant to 

data transformation.
● by leveraging the projection head  g(ᐧ), more 

information can be preserved in the h representation 
space
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• SimCLR [Chen et al., 2020]

• A simple framework for contrastive learning without requiring specialized architectures or a memory bank

• This paper founds that contrastive learning benefits from …
3. Large batch sizes and longer training

SimCLR: A Simple Framework for Contrastive Learning

Large training batch size is crucial for 
SimCLR!

Large batch size causes large memory 
footprint during backpropagation: 
requires distributed training on TPUs 
(ImageNet experiments)

89



• SimCLR [Chen et al., 2020]

• A simple framework for contrastive learning without requiring specialized architectures or a memory bank

• SimCLR achieves outstanding performance in various downstream tasks

Fine-grained image classification tasks

Linear evaluation in ImageNetSemi-supervised learning in ImageNet

SSL via Invariance
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Training linear classifier on SimCLR features

Train feature encoder on 
ImageNet (entire training set) 
using SimCLR.

Freeze feature encoder, train 
a linear classifier on top with 
labeled data.

Source: Chen et al., 2020

Fei-Fei Li, Jiajun 
Wu, Ruohan Gao

Lecture 14 -

May 17, 
2022
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Semi-supervised learning on SimCLR features

Train feature encoder on 
ImageNet (entire training set) 
using SimCLR.

Finetune the encoder with 1% / 
10% of labeled data on 
ImageNet.

Source: Chen et al., 2020

Fei-Fei Li, Jiajun 
Wu, Ruohan Gao

Lecture 14 -

May 17, 
2022

92



• Momentum Contrast (MoCo) [He et al., 2019]
• Key issue: the number of negatives is very crucial in contrastive learning

• How to resolve this issue in prior works? Memory Bank

• Note: representations in the memory bank are momentum-updated

• MoCo’s idea: use a momentum-updated encoder and maintain a queue

• Momentum encoder increases the key representations’ consistency

• Queue allows us to use recent and many negative samples

Momentum Contrastive Learning (MoCo)
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• Momentum Contrast (MoCo) [He et al., 2019]
• Key issue: the number of negatives is very crucial in contrastive learning

• How to resolve this issue in prior works? Memory Bank

• Note: representations in the memory bank are momentum-updated

• MoCo’s idea: use a momentum-updated encoder and maintain a queue

• MoCo also optimizes contrastive learning objective

Randomly augmented samples →

Momentum Contrastive Learning (MoCo)
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• Momentum Contrast (MoCo) [He et al., 2019]
• Key issue: the number of negatives is very crucial in contrastive learning

• How to resolve this issue in prior works? Memory Bank

• Note: representations in the memory bank are momentum-updated

• MoCo’s idea: use a momentum-updated encoder and maintain a queue

• MoCo also optimizes contrastive learning objective

• After encoder is updated,

• Momentum encoder is updated by

• Add the current positive keys     into the queue

Randomly augmented samples →

Momentum Contrastive Learning (MoCo)
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• Momentum Contrast (MoCo) [He et al., 2019]
• MoCo’s idea: use a momentum-updated encoder and maintain a queue

• Momentum encoder increases the key representations’ consistency

• Queue allows us to use recent and many negative samples

Algorithmic Intelligence Lab

Momentum Contrastive Learning (MoCo)
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Key differences to SimCLR:
no_grad

● Keep a running queue of keys
(negative samples).

● Compute gradients and update the 
encoder only through the queries.

● Decouple min-batch size with the 
number of keys: can support a large 
number of negative samples.

Source: He et al., 2020

Fei-Fei Li, Jiajun 
Wu, Ruohan Gao

Lecture 14 -

May 17, 
2022

97
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Key differences to SimCLR:
no_grad

● Keep a running queue of keys
(negative samples).

● Compute gradients and update the 
encoder only through the queries.

● Decouple min-batch size with the 
number of keys: can support a large 
number of negative samples.

● The key encoder is slowly progressing 
through the momentum update rules:

Source: He et al., 2020

Fei-Fei Li, Jiajun 
Wu, Ruohan Gao

Lecture 14 -

May 17, 
2022

98

Momentum Contrastive Learning (MoCo)



MoCo

Generate a positive pair 
by sampling data 
augmentation functions

No gradient through 
the positive sample

Use the running 
queue of keys as the 
negative samples

InfoNCE loss

Update f_k through 
momentum

Update the FIFO
negative sample queue

Source: He et al., 2020

Fei-Fei Li, Jiajun 
Wu, Ruohan Gao

Lecture 14 -

May 17, 
2022
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A hybrid of ideas from SimCLR and MoCo:
● From SimCLR: non-linear projection head and strong data augmentation.
● From MoCo: momentum-updated queues that allow training on a large number of negative 

samples (no TPU required!).

Source: Chen et al., 2020

Fei-Fei Li, Jiajun 
Wu, Ruohan Gao

Lecture 14 -

May 17, 
2022

100

“MoCo V2”



MoCo vs. SimCLR vs. MoCo V2
Key takeaways:

● Non-linear projection head and 
strong data augmentation are crucial 
for contrastive learning.

Source: Chen et al., 2020

Fei-Fei Li, Jiajun 
Wu, Ruohan Gao

Lecture 14 -

May 17, 
2022
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MoCo vs. SimCLR vs. MoCo V2
Key takeaways:

● Non-linear projection head and 
strong data augmentation are crucial 
for contrastive learning.

● Decoupling mini-batch size with 
negative sample size allows
MoCo-V2 to outperform SimCLR with 
smaller batch size (256 vs. 8192).

Source: Chen et al., 2020

Fei-Fei Li, Jiajun 
Wu, Ruohan Gao

Lecture 14 -

May 17, 
2022
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MoCo vs. SimCLR vs. MoCo V2
Key takeaways:

● Non-linear projection head and 
strong data augmentation are crucial 
for contrastive learning.

● Decoupling mini-batch size with 
negative sample size allows
MoCo-V2 to outperform SimCLR with 
smaller batch size (256 vs. 8192).

● … all with much smaller memory 
footprint! (“end-to-end” means 
SimCLR here)

Source: Chen et al., 2020

Fei-Fei Li, Jiajun 
Wu, Ruohan Gao

Lecture 14 -

May 17, 
2022
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81
76.5

69.3

60.6

MoCo SimCLR SimCLR Moco-v3 
(ResNet50) (ResNet50) (ResNet50x4) 
(ViT-BN-L/7)

Prediction
He et al, “Momentum Contrast for Unsupervised Visual Representation Learning”, CVPR 
2020 Chen et al, “A Simple Framework for Contrastive Learning of Visual Representations”, 
ICML 2020 Chen et al, “An Empirical Study of Training Self-Supervised Vision Transformers”, 
ICCV 2021

(Lots of caveats here … different architectures, 
etc)
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He et al, “Momentum Contrast for Unsupervised Visual Representation Learning”, CVPR 
2020 Chen et al, “A Simple Framework for Contrastive Learning of Visual Representations”, 
ICML 2020 Chen et al, “An Empirical Study of Training Self-Supervised Vision Transformers”, 
ICCV 2021

(ResNet50) (ResNet50) (ResNet50x4)

(Lots of caveats here … different architectures, 
etc)

give huge 
improvements!
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46

Prediction
He et al, “Momentum Contrast for Unsupervised Visual Representation Learning”, CVPR 
2020 Chen et al, “A Simple Framework for Contrastive Learning of Visual Representations”, 
ICML 2020 Chen et al, “An Empirical Study of Training Self-Supervised Vision Transformers”, 
ICCV 2021
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Features learned from
  SSL methods match  
supervised pre training

  on ImageNet

33.8

He et al, “Momentum Contrast for Unsupervised Visual Representation Learning”, CVPR 2020 Chen et al, “Improved Baselines with Momentum Contrastive Learning”, arXiv 2020
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A general formulation for contrastive learning:

InfoNCE loss: N-way classification among positive and negative samples

Commonly known as the InfoNCE loss (van den Oord et al., 2018)
A lower bound on the mutual information between f(x) and f(x+)

Fei-Fei Li, Jiajun 
Wu, Ruohan Gao

Lecture 14 -

May 17, 
2022

Summary: Contrastive Representation Learning
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SimCLR: a simple framework for 
contrastive representation learning

● Key ideas: non-linear projection head to 
allow flexible representation learning

● Simple to implement, effective in learning 
visual representation

● Requires large training batch size to be 
effective; large memory footprint

Fei-Fei Li, Jiajun 
Wu, Ruohan Gao

Lecture 14 -

May 17, 
2022

Summary: Contrastive Representation Learning
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MoCo (v1, v2): contrastive learning using 
momentum sample encoder:

● Decouples negative sample size from 
minibatch size; allows large batch training 
without TPU

● MoCo-v2 combines the key ideas from 
SimCLR, i.e., nonlinear projection head, 
strong data augmentation, with momentum 
contrastive learning

Fei-Fei Li, Jiajun 
Wu, Ruohan Gao

Lecture 14 -

May 17, 
2022

Summary: Contrastive Representation Learning
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Negative pair

This relation might be not true

• Q) can we learn representations without negative samples?

• Simply minimizing leads to mode collapse, i.e.,

• Next: Positive-only approaches

• Limitations in contrastive learning (with negatives)
• It is sensitive to the number of negative ⇒ a large batch size or a queue is required

• Are all the different instances negative?

Positive pair

Algorithmic Intelligence Lab

Summary: Contrastive Representation Learning
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“Self” Distillation

• What we want

• How we do it

• Prevent trivial solutions by asymmetry
• Asymmetric learning rule between student 

teacher
• Asymmetric architecture between student 

teacher
46
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• What we 
want

• How we do it

BYOL - Grill et al., 2020

• Bootstrap You Own Latent (BYOL) [Grill et al., 2020]
• Idea: directly bootstrap the representations
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• Key components: target (momentum) network, predictor, stop-gradient (sg)

Objective Update

* source : [Grill et al., 2020] 25

• Bootstrap You Own Latent (BYOL) [Grill et al., 2020]
• Idea: directly bootstrap the representations
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Objective Update

• Bootstrap You Own Latent (BYOL) [Grill et al., 2020]
• Idea: directly bootstrap the representations
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(BYOL) [Grill et al., 2020]



• BYOL is more robust to the choice of batch sizes and augmentations

• Bootstrap You Own Latent (BYOL) [Grill et al., 2020]
• Idea: directly bootstrap the representations
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• BYOL is more robust to the choice of batch sizes and augmentations

• BYOL achieves 74.3% linear evaluation accuracy; supervised learning does 76.5%

• Bootstrap You Own Latent (BYOL) [Grill et al., 2020]
• Idea: directly bootstrap the representations
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DINO - Caron et al., 2022

• DINO [Caron et al., 2021]
• Idea: representation learning via self knowledge-distillation

• What we 
want

• How we do it
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• DINO [Caron et al., 2021]
• Idea: representation learning via self knowledge-distillation

• Key components:
• (self) knowledge-distillation

• Distill the teacher (EMA version of a student) knowledge to the student

• multi-crop: a strategy to generate positive views

• centering and sharpening: a strategy to avoid collapse
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• DINO constructs a set of views 𝑉 via multi-crop strategy:

• (1) global views: 𝑥g, 𝑥g
1 2

• (2) local views with smaller resolution

• All crops are passed through the student; only the global views are passed through the teacher: 
“local-to-global” correspondences

• Therefore, the loss is written as:

• DINO [Caron et al., 2021]
• Idea: representation learning via self knowledge-distillation
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• DINO avoids the collapse via centering and sharpening

• Centering: adding a bias term c to the teacher

• The center c is updated with an exponential moving average

• Sharpening: using a low value for the temperature 𝜏𝑡 in the teacher softmax normalization

• DINO [Caron et al., 2021]
• Idea: representation learning via self knowledge-distillation
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• DINO [Caron et al., 2021]
• DINO outperforms previous contrastive methods in classification tasks

• Self-supervised ViT features contain explicit information about the semantic segmentation of an image

Top-1 accuracy for linear and k-NN evaluations on the 
validation set of ImageNet

Self-attention map on [CLS] of self-supervised ViT

Video instance segmentation on top of 
self-supervised feature

• DINO [Caron et al., 2021]
• Idea: representation learning via self knowledge-distillation
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• DINO v2 [Oquab et al., 2023]
• Data preprocessing (LVD-142M dataset)

• Curated dataset from ImageNet and fine-grained dataset

• Uncurated dataset sourced from crawled web data

• Deduplication: remove near-duplicate images to increase diversity

• Self-supervised image retrieval: using ImageNet-22k pretrained ViT-H/16, retrieve relevant data from 
uncurated source using K-means clustering

DINO v2: Learning Robust Visual Features without Supervision
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• DINO v2 [Oquab et al., 2023]
• Data preprocessing (LVD-142M dataset)

• Curated dataset from ImageNet and fine-grained dataset

• Uncurated dataset sourced from crawled web data

• Deduplication: remove near-duplicate images to increase diversity

• Self-supervised image retrieval: using ImageNet-22k pretrained ViT-H/16, retrieve relevant data from 
uncurated source using K-means clustering

• LVD-142M maintains ImageNet-1K performance while improving in other domains

DINO v2: Learning Robust Visual Features without Supervision
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• DINO v2 [Oquab et al., 2023]
• Training method

• Use both image-level objective in DINO and MIM objective in iBOT

• KoLeo regularizer: minimize the differential entropy of features

• Encourage features to be uniformly distributed

• Effect of KoLeo loss term and Masked Image Modeling from iBOT

DINO v2: Learning Robust Visual Features without Supervision
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• DINO v2 [Oquab et al., 2023]
• DINO v2 matches domain generalization performance of CLIP

• Linear probing experiments on ImageNet-A/R/C/Sketch

DINO v2: Learning Robust Visual Features without Supervision
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• DINO v2 [Oquab et al., 2023]
• DINO v2 is better at transferring to vision tasks

• Semantic segmentation on ADE20K, Cityscapes, Pascal VOC with frozen feature

• Depth estimation on NYUd, KITTI, NYUd -> SUN RGB-D with frozen feature

Algorithmic Intelligence Lab

DINO v2: Learning Robust Visual Features without Supervision
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1. Problem

2. Introduction
• Foundation models in vision tasks

3. Self-supervised Learning
• Discriminative Visual Foundation Models

■ Contrastive learning [SimCLR, MoCo, …]

■ Self Distillation[BYOL, DINO, …]

• Generative Visual foundation models
■ Mask Auto-Encoder [MAE]

• Evaluation

4. Multi-Modal Self-supervised Learning [CLIP]
• Image-text Contrastive Learning

5. Segment Anything [SAM]

Table of Contents
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What is Masked Auto-Encoding (MAE)?

• Very simple method, but highly effective
• BERT-like masked modeling objective, but with crucial 

design changes for computer vision

[Devlin et al, NAACL 2019] [He et al, CVPR 2022]
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BERT-unlike: Encoder-Decoder

projection layer

• MAE:
• Large encoder on visible tokens
• Small decoder on all tokens
• Projection layer to connect the two

[Devlin et al, NAACL 2019]

131



BERT-unlike: Encoder-Decoder

projection layer

• MAE:
• Large encoder on visible tokens
• Small decoder on all tokens
• Projection layer to connect the two

• Very efficient when coupled with high 
mask ratio (75%)

[Devlin et al, NAACL 2019]
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• MAE [He et al., 2022]
• Task: Predicting the pixel values for each masked patch

• Objective: MSE loss of masked patches

• Key components:

• High masking ratio (75%):

• BERT masks 15% of tokens, MAE needs higher masking ratio

• Asymmetric encoder-decoder architecture:

• MAE allows to train very large transformer encoder by using the lightweight decoder => it 

significantly reduces the pre-training time

Masked Autoencoders (MAE)
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How MAE Works?

Random masking

Divide image into non overlapping 
patches, discard most of them
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How MAE Works?

Encode visible patches 
with ViT

Divide image into non overlapping 
patches, discard most of them
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How MAE Works?

Add mask tokens

Divide image into non overlapping 
patches, discard most of them
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How MAE Works?

Reconstruct

Decoder is a small ViT that predicts 
pixel values of the masked patches

Divide image into non overlapping 
patches, discard most of them
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MAE for Downstream Tasks: Encoder Only

• After MAE pre-training, just throw away the decoder

• Encoder is used for representations with full-sequence input
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Masked Autoencoders (MAE): Reconstructions

Input Patches Prediction Actual Image

He et al, “Masked Autoencoders are Scalable Vision Learners”, CVPR 2022
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Masked Autoencoders (MAE): Reconstructions

Input Patches Prediction Actual Image

He et al, “Masked Autoencoders are Scalable Vision Learners”, CVPR 2022
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Masked Autoencoders (MAE): Reconstructions

Input Patches Prediction Actual Image

He et al, “Masked Autoencoders are Scalable Vision Learners”, CVPR 2022
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MAE Reconstruction Example

Masked input: 80% You guess?

?
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MAE Reconstruction Example

Masked input: 80% MAE’s guess
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75% mask

85% mask
original

MAE Can Generalize
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75% mask

85% mask

95% mask

original

MAE Can Generalize
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75% mask

original
85% mask

95% mask

MAE Can Generalize
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• MAE [He et al., 2022]
• Task: Predicting the pixel values for each masked patch

• Asymmetric encoder-decoder architecture: MAE uses the lightweight decoder

• The decoder depth is less influential for improving fine-tuning

• Only a single transformer block decoder can perform strongly with fine-tuning

• MAE decoder uses the decoder with 8 blocks and a width of 512-d, which has 9% FLOPs per token vs. ViT-L

Masked Autoencoders (MAE)
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• MAE [He et al., 2022]
• Task: Predicting the pixel values for each masked patch

• Other properties of MAE

(c) MAE skips the mask token [M] in the encoder and apply it later in the decoder

• It is more accurate and decreases the computation time

(d) Predicting pixels with per-patch normalization improves accuracy

(e) MAE works well using cropping-only augmentation

• MAE behaves decently even if using no data augmentation

Masked Autoencoders (MAE)
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Analysis: Augmentations

x′

x′′
x

• MAE can work with minimal data augmentation
• For Contrastive / Siamese learning, augmentation is crucial
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Analysis: Augmentations

x′

x′′
x

• MAE can work with minimal data augmentation
• For Contrastive / Siamese learning, augmentation is 
crucial

• Masking as a strong “augmentation”: MSN, I-JEPA

[Assran et al, ECCV 2022] [Assran et al, CVPR 2023]
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• MAE [He et al., 2022]
• Task: Predicting the pixel values for each masked patch

• Other properties of MAE

(f) Random patch masking is better than block-wise and grid-wise sampling

• Block-wise sampling: Removes large random blocks

• Grid-wise sampling: Keeps one of every four patches

Masked Autoencoders (MAE)
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Analysis: Mask Ratio
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How to evaluate?
Most standard way:

1. Use the pretrained network from self-supervised learning 
2. Use some amount of labeled data for the downstream task Measure 

performance

54
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Fine-tune all layers Linear classifier kNN

How to use the labeled data?

55

159



How to evaluate a self-supervised learning method?

lots of 
unlabele
d data

self-supervised 
learning

feature 
extractor 
(e.g., a 

convnet)

90°

conv fc

1. Learn good feature extractors from 
self-supervised pretext tasks, e.g., 
predicting image rotations

Fei-Fei Li, Jiajun 
Wu, Ruohan Gao

Lecture 14 -

May 17, 
2022
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How to evaluate a self-supervised learning method?

lots of 
unlabele
d data

self-supervised 
learning

feature 
extractor 
(e.g., a 

convnet)

small amount 
of labeled data 
on the target 

task

supervised 
learning

evaluate on the 
target task

e.g. classification, detection

90°

conv fc

1. Learn good feature extractors from 
self-supervised pretext tasks, e.g., 
predicting image rotations

bird

conv linear 
classifier

2. Attach a shallow network on the 
feature extractor; train the shallow 
network on the target task with small 
amount of labeled data

Fei-Fei Li, Jiajun 
Wu, Ruohan Gao

Lecture 14 -

May 17, 
2022
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Are the models useful without any labeled data?

DINO - Caron et al., 2022
59
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Large 
Language 

Models
Vision - Language GAP

• Self-supervised learning allows representation learning at 
scale

• Masked auto-encoders as a step toward scalable vision 
learners

• Still need to close the gap with large language models

MAE
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- Contrastive learning between image and natural language sentences

CLIP (Contrastive Language–Image Pre-training) Radford et al., 
2021

Fei-Fei Li, Jiajun 
Wu, Ruohan Gao

Lecture 14 -

May 17, 
2022

93

CLIP: Contrastive Language-Image Pre-training
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Radford et al, “Learning Transferable Visual Models form Natural Language Supervision”, ICML 2021
Jia et al, “Scaling up Visual and Vision-Language Representation Learning with Noisy Text Supervision”, ICLR 2021

Contrastive loss: 
Each image predicts 
which caption 
matches

Large-scale training on 
400M (image, text) 
pairs from the 
internet

- Contrastive learning between image and natural language sentences

CLIP: Contrastive Language-Image Pre-training
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CLIP [Radford et al., 2020]

• Simple contrastive learning between image and text embeddings

• Trained on large-scale web image-text pairs

(1) Contrastive pre-training

Image 
Encoder

Text 
EncoderPepper the

aussie pup

Pepper the
aussie pup

Pepper the
aussie pup

Pepper the 
aussie pup

T1 T2 T3 … TN

I1

I2

I3

⋮

IN

…

⋮

I1·T1 I1·T2 I1·T3 … I1·TN

I2·T1 I2·T2 I2·T3 … I2·TN

I3·T1 I3·T2 I3·T3 … I3·TN

⋮ ⋮ ⋮ ⋱ ⋮

IN·T1 IN·T2 IN·T3 … IN·TN

CLIP: Contrastive Language-Image Pre-training

167



CLIP [Radford et al., 2020]

• Zero-shot transfer
• Transfer learning without seeing the images or labels

• Prompt Engineering: ”A photo of a [MASK]”

• Choose class that maximizes similarity with respect to image

I1·T1 I1·T2 I1·T3 … I1·TN

I2·T1 I2·T2 I2·T3 … I2·TN

I3·T1 I3·T2 I3·T3 … I3·TN

⋮ ⋮ ⋮ ⋱ ⋮

IN·T1 IN·T2 IN·T3 … IN·TN

(1) Contrastive pre-training

Image 
Encoder

Text 
EncoderPepper the

aussie pup

Pepper the
aussie pup

Pepper the
aussie pup

Pepper the 
aussie pup

T1 T2 T3 … TN

I1

I2

I3

⋮

IN

…

⋮

CLIP: Contrastive Language-Image Pre-training

Language enables zero- shot classification: Classify images 
into categories without any additional training data!
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CLIP [Radford et al., 2020]

• Zero-shot transfer
• Transfer learning without seeing the images or labels

• Prompt Engineering: ”A photo of a [MASK]”

• Choose class that maximizes similarity with respect to image

CLIP: Contrastive Language-Image Pre-training
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Very strong performance on 
many downstream vision 
problems!

Performance continues to 
improve with larger models

Radford et al, “Learning Transferable Visual Models form Natural Language Supervision”, ICML 2021

CLIP: Contrastive Language-Image Pre-training
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CLIP [Radford et al., 2020]

• A zero-shot CLIP classifier shows a competitive performance with a fully supervised linear classifier 

fitted on ResNet-50 features

• Linear-probing with CLIP image features outperform the best ImageNet model

CLIP: Contrastive Language-Image Pre-training
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CLIP [Radford et al., 2020]

• Zero-shot CLIP classifier is more robust to natural distributional shift

• Interestingly, [Ilharco et al., 2021] show that CLIP have high effective robustness even at small scale

Effective 

Robustness

CLIP: Contrastive Language-Image Pre-training

172



CLIP [Radford et al., 2020]

• Zero-shot CLIP classifier is more robust to natural distributional shift

• Interestingly, [Ilharco et al., 2021] show that CLIP have high effective robustness even at small scale

• Few-shot CLIP classifier also shows high effective robustness, but less than zero- shot CLIP classifier

CLIP: Contrastive Language-Image Pre-training
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Follow-up studies showed scaling dataset size improves performance

• CLIP uses carefully filtered 400M image-text pairs from web

• ALIGN [Jia et al., 2020] collected noisy 1.8B image-text pairs to scale CLIP

• BASIC [Pham et al., 2021] used 6.6B image-text pairs with bigger model size

- Scaling Up dataset size for improved CLIP

CLIP: Contrastive Language-Image Pre-training
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https://cdn.openai.com/papers/dall-e-2.pdf

CLIP: Contrastive Language-Image Pre-training
- Limitation
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Segment Anything Model (SAM) [Kirillov et al., 2023]
• A foundation model for image segmentation, i.e., predicting object masks

• SA-1B dataset

• Web-scale 11M photography and 1.1B segmentation masks1

• Enables strong zero-shot transfer on new domains

• e.g., segmenting underwater scenes, or microscopy

Segment Anything Models (SAM)

SA-1B examples
Zero-shot transfer with SAM
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Segment Anything Models (SAM)
Segment Anything Model (SAM) [Kirillov et al., 2023]

• Promptable Segmentation via points and boxes

• User can steer the image segmentation, like prompting MLs

• For example, user can prompt regions to be included & excluded by the model

• Segmenting the whole image can be done by prompting a grid of points

include exclude

Prompt-based

Image Segmentation by SAM

Segmenting the whole image by 

prompting a grid of points
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SAM

https://segment-anything.com/
https://docs.ultralytics.com/models/sam/
https://arxiv.org/abs/2304.02643
https://github.com/facebookresearch/segment-anything
https://github.com/Hedlen/awesome-segment-anything 181181

https://segment-anything.com/
https://docs.ultralytics.com/models/sam/
https://arxiv.org/abs/2304.02643
https://github.com/facebookresearch/segment-anything
https://github.com/Hedlen/awesome-segment-anything


Component of SAM model
• Image Encoder

• A ViT model producing a one-time embedding for segmentation
• The embedding can be shared for different prompts

• Prompt Encoder

• Encodes point, box, or text1 prompts into transformer tokens

• Mask Decoder

• Prompt token and image embedding goes through a transformer decoder

• Decoder predicts multiple candidates for segmentation mask and the confidence

Note: Text encoding function is not published.

Segment Anything Models (SAM)
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SA-1B dataset
• Web-scale 11M photography and 1.1B segmentation masks

• Challenge: manually annotating the images is too expensive

• Model-in-the-loop design

1. The data annotators use and fix SAM’s outputs to annotate images (semi- auto)

2. Newley available annotations are then used to re-train SAM

3. The process is repeated and SAM’s performance is bootstrapped

• Finally, the automatic annotator (a SAM) creates the SA-1B dataset

Model-in-the-loop process is repeated +10 times to get the final automatic annotation

Segment Anything Models (SAM)
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SAM model variants
• Default variants by the original research paper

• Considers different image enocders: ViT-B, ViT-L, ViT-H

• A direct trade-off on performance vs. computation cost

Segment Anything Models (SAM)
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SAM model variants
• Default variants by the original research paper

• Considers different image enocders: ViT-B, ViT-L, ViT-H

• A trivial trade-off on segmentation accuracy vs. computation cost

• More effective way for the efficiency?

Segment Anything Models (SAM)
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Fast SAM

Semantic SAM

Faster SAM

Personal SAM
 [SAM]
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FastSAM [Zhao et al., 2023]
• Trains SA-1B on a CNN-based architecture for image segmentation (YoLo v7)

• Predicts all possible masks at once, without conditioning on prompts
(+) Better parallization on the GPUs (Running time is independent to the number of points)

(−) Does not learn to utilize user prompts, e.g., points, boxes

YoLo architecture predicts all image segmentations at once

Segment Anything Models (SAM)
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MobileSAM [Zhang et al., 2023]
• Downsizing the image encoder through Knowledge Distillation [Hinton et al., 2015]

• Parameters: 611M (ViT-H) → 5M (tiny transformer)

• Image embedding space tends to be similar after knowledge distillation
• Can perform well close to the original SAM

• Realtime inference 452ms (Original SAM) → 8ms (MobileSAM)

Image encoder is distillated, with a frozen mask decoder

Segment Anything Models (SAM)
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SAM-HQ [Ke et al., 2023]
• Identifies the weakness of SAM and SA-1B dataset

• Failures on objects with intricate structures (e.g., grate patterns)

SAM has weakness on intricate structures, which gets fixed by HQ-SAM [Ke et al., 2023]

Segment Anything Models (SAM)
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SAM-HQ [Ke et al., 2023]
• SAM-HQ introduces fine-tuning to mitigate the failure cases (HQSeg-44K dataset)

• Custom collection of 44K images, with extremely intricate segmentation annotations

SAM vs. HQ-SAM on HQSeq-44k samples

Segment Anything Models (SAM)
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SAM-HQ [Ke et al., 2023]
• The pretrained SAM parameters remain frozen

• Prevents model overfitting or catastrophic forgetting by a small HQSeg-44K dataset

• SAM-HQ only introduces a tunable prompt token and MLPs for fusion

• Requires training only 5.1M additional parameters (0.5% of the SAM’s parameters)

HQ-SAM architecture

Training cost of HQ-SAM

Segment Anything Models (SAM)
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SAM-HQ [Ke et al., 2023]
• The pretrained SAM parameters remain frozen

• Prevents model overfitting or catastrophic forgetting by a small HQSeg-44K dataset

• SAM-HQ only introduces a tunable prompt token and MLPs for fusion

• Brings simple and effective performance boosts on all existing SAM variants

• Including VIT-H, ViT-L, ViT-B and MobileSAM [Zhang et al., 2023]

Zero-shot performances on MS-COCO

Segment Anything Models (SAM)

192



Notable Applications of SAM

• Open-Vocabulary Semantic Segmentation (e.g., Grounded SAM [Liu et al., 2023])
Basic Idea: prompting SAM with boxes, via text-prompted box predictors

• Recent vision-language models can make zero-shot box predictions at ease

e.g., GroundingDINO [Liu et al., 2023], ViLD [Gu et al., 2022]

• However, zero-shot semantic segmentation has remained challenging

● SAM directly escalates the semantic box predictions → segmentation masks

● A break-through in the zero-shot, open vocabulary, semantic segmentation task

Segment Anything Models (SAM)
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TAM

MAM

CAM

RAM FAN

 [SAM]
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Conclusion

Segment Anything Model, a foundation model in Vision AI
• Trained on a web-scale dataset of 11M images & 1B+ masks

• Adaptable to wide range of image domains & tasks via user prompts

           Foundation Model = scale & flexibility

SA-1B Anything 3D [NUS team, 2023]

Segment Anything Models (SAM)
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Foundation Models?

MAE 
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Domain gap…

•For example, open source SSL models is pre-trained on natural 
looking images:

•But, your data looks like this:

Solution: Fine-tune SSL pretrained model using on your data
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Video understanding is an important research topic.

Videos
Tremendous videos and media contents can be obtained from: 

Smartphone
Robot

Eye

TV

YouTube

Surveillance
Camera
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Build VFM on the top of IFM
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Build VFM by learning from scratch with MAE
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Video Foundation Models

VideoMAE
-V2
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UniFormer
-V2

VATTViViT Intern Video Unmasked 
Teacher
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Downstream Tasks

Action 
Understanding01

Video Language 
Alignment 02

Video Open 
Understanding03

1. Action Recognition
2. Temporal Action Localization
3. Spatiotemporal Action Localization

1. Video Retrieval
2. Video Question Answering
3. Visual Language Navigation

1. Zero-shot Action Recognition
2. Zero-shot Multiple Choice
3. Open-set Action Recognition
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